Skip to main content
Log in

Survey of diverse hydrometallurgy techniques for recovering and extracting valuable metals from PCB waste: an overview

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

As technology advances and auxiliary electrical and electronic equipment expands, waste printed circuit boards are among the quickest growing sources of waste. Throughout the world, the exploitation of waste printed circuit boards has become one of the lucrative commercial enterprises in the recycling production company. Additionally, it can also cause a variety of effects on humans and the environment in terms of metal ions. In order to facilitate the recovery and recycling of printed circuit board, several innovative techniques have been developed, including pyrometallurgy, hydrometallurgy, and biometallurgy. It is possible to recover and recycle precious metals through the hydrometallurgy process simply and conveniently. Economic efficiency, environmental friendliness, and durability make this technology auspicious. On the other hand, there are few comprehensive studies on the hydrometallurgy and chemical processing of waste printed circuit board. As a result, in this work, a mini-review was performed in order to assess different chemical leaching methods, optimize parameters, and examine future investigation pathways.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7
Fig. 8 
Fig. 9

Similar content being viewed by others

Data Availability

Data available with the paper: Data availability is not applicable to this review article as no new data were created or analysed in this study.

Abbreviations

DMA:

Dimethylacetamide

DMF:

Dimethylformamide

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

DTPA:

Diethylenetriaminepentaacetic acid

ECS:

Eddy Current Separator

E-waste:

Electronic Waste

H2SO4 :

Sulphuric acid

HCl:

Hydrochloric acid

HCN:

Hydrogen cyanide

HNO3 :

Nitric acid

NMP:

N-methyl-2-pyrrolidone

NTA:

Nitrilotriacetic acid

PCBs:

Printed Circuit Board

PM:

Precious metal

PNDEs:

Polybrominated diphenyl ethers

PPM:

Parts per million

REE:

Rare earth elements

SCF:

Supercritical fluid extraction

WEEE:

Electrical and electronic equipment

References

  • Abubakar A, Zangina AS, Maigari AI, Badamasi MM, Ishak MY, Abdullahi AS, Haruna JA (2022) Pollution of heavy metal threat posed by e-waste burning and its assessment of human health risk. Environ Sci Pollut Res 29(40):61065–61079

    Article  CAS  Google Scholar 

  • Akcil A (2010) A new global approach of cyanide management: international cyanide management code for the manufacture, transport, and use of cyanide in the production of gold. Miner Process Extr Metall Rev 31(3):135–149

    Article  CAS  Google Scholar 

  • Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants–a review. Waste Manage 45:258–271

    Article  CAS  Google Scholar 

  • Anand B, Jha A, Kumar MK, Sahu R (2013) Recycling of precious metal gold from waste electrical and electronic equipments (WEEE): a review. In: Proceedings of the XIII international seminar on mineral processing technology, 916–923). MPT

  • Asghari I, Mousavi SM, Amiri F, Tavassoli S (2013) Bioleaching of spent refinery catalysts: a review. J Ind Eng Chem 19(4):1069–1081

    Article  CAS  Google Scholar 

  • Awasthi AK, Hasan M, Mishra YK, Pandey AK, Tiwary BN, Kuhad RC, Gupta VK, Thakur VK (2019) Environmentally sound system for E-waste: biotechnological perspectives. Curr Res Biotechnol 1:58–64

    Article  Google Scholar 

  • Azevedo ÁBAD, Kieckbusch TG, Tashima AK, Mohamed RS, Mazzafera P, Melo SABVD (2008) Supercritical CO2 recovery of caffeine from green coffee oil: new experimental solubility data and modeling. Quim Nova 31:1319–1323

    Article  Google Scholar 

  • Baldé CP, Forti V, Gray V, Kuehr R, Stegmann P (2017) The global e-waste monitor 2017: quantities, flows and resources. United Nations University, International Telecommunication Union, and International Solid Waste Association

  • Becci A, Amato A, Fonti V, Karaj D, Beolchini F (2020) An innovative biotechnology for metal recovery from printed circuit boards. Resour Conserv Recycl 153:104549

    Article  Google Scholar 

  • Behnamfard A, Salarirad MM, Veglio F (2013) Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste management 33(11):2354-2363

    Article  CAS  Google Scholar 

  • Birloaga I, De Michelis I, Ferella F, Buzatu M, Vegliò F (2013) Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Manage 33(4):935–941

    Article  CAS  Google Scholar 

  • Birloaga I, Vegliò F (2018) Hydrometallurgical processing of waste printed circuit boards. In: Waste electrical and electronic equipment recycling (pp. 95–113). Woodhead Publishing

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3–4):591–604

    Article  CAS  Google Scholar 

  • Bougnoux P, Hajjaji N, Maheo K, Couet C, Chevalier S (2010) Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic re-growth. Prog Lipid Res 49(1):76–86

    Article  CAS  Google Scholar 

  • Cakir O (2006) Copper etching with cupric chloride and regeneration of waste etchant. J Mater Process Technol 175(1–3):63–68

    Article  CAS  Google Scholar 

  • Castro FD, Bassin JP (2022) Electronic waste: environmental risks and opportunities. In: Hazardous waste management. Elsevier pp. 421–458

  • Chauhan G, Pant KK, Nigam KD (2012) Extraction of nickel from spent catalyst using biodegradable chelating agent EDDS. Ind Eng Chem Res 51(31):10354–10363

    Article  CAS  Google Scholar 

  • Chen J, Meng T, Leng E, Jiaqiang E (2022) Review on metal dissolution characteristics and harmful metals recovery from electronic wastes by supercritical water. J Hazard Mater 424:127693

    Article  CAS  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: A review. J Hazard Mater 158(2-3):228-256

    Article  CAS  Google Scholar 

  • D’Adamo I, Ferella F, Gastaldi M, Maggiore F, Rosa P, Terzi S (2019) Towards sustainable recycling processes: Wasted printed circuit boards as a source of economic opportunities. Resour Conserv Recycl 149:455–467

    Article  Google Scholar 

  • Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103(1–4):180–189

    Article  CAS  Google Scholar 

  • Elliott HA, Shastri NL (1999) Extractive decontamination of metal-polluted soils using oxalate. Water Air Soil Pollut 110:335–346

    Article  CAS  Google Scholar 

  • Elomaa H, Seisko S, Junnila T, Sirviö T, Wilson BP, Aromaa J, Lundström M (2017) The effect of the redox potential of aqua regia and temperature on the Au, Cu, and Fe dissolution from WPCBs. Recycling 2(3):14

    Article  Google Scholar 

  • Fan R, Xie F, Guan X, Zhang Q, Luo Z (2014) Selective adsorption and recovery of Au (III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from e-wastes. Biores Technol 163:167–171

    Article  CAS  Google Scholar 

  • Faramarzi MA, Mogharabi-Manzari M, Brandl H (2020) Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 191:105228

    Article  CAS  Google Scholar 

  • Fayaz SM, Abdoli MA, Baghdadi M, Karbasi A (2021) Ag removal from e-waste using supercritical fluid: improving efficiency and selectivity. Int J Environ Stud 78(3):459–473

    Article  CAS  Google Scholar 

  • Ficeriová J, Baláž P, Gock E (2011) Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste. Acta Montanistica Slovaca 16(2):128

    Google Scholar 

  • Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19

    Article  CAS  Google Scholar 

  • Grčman H, Vodnik D, Velikonja-Bolta Š, Leštan D (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32(2):500–506

    Article  Google Scholar 

  • Gu W, Bai J, Dong B, Zhuang X, Zhao J, Zhang C, Wang J, Shih K (2017) Catalytic effect of graphene in bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 171:172–178

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep Purif Technol 18(2):131–140

    Article  CAS  Google Scholar 

  • Gurgul A, Szczepaniak W, Zabłocka-Malicka M (2017) Incineration, pyrolysis and gasification of electronic waste. In E3S Web of conferences 22:00060, EDP Sciences

  • Gurung M, Adhikari BB, Kawakita H, Ohto K, Inoue K, Alam S (2013) Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy 133:84–93

    Article  CAS  Google Scholar 

  • Ha VH, Lee JC, Jeong J, Hai HT, Jha MK (2010) Thiosulfate leaching of gold from waste mobile phones. J Hazard Mater 178(1–3):1115–1119

    Article  CAS  Google Scholar 

  • Ha VH, Lee JC, Huynh TH, Jeong J, Pandey BD (2014) Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone. Hydrometallurgy 149:118–126

    Article  CAS  Google Scholar 

  • Han J, Duan C, Lu Q, Jiang H, Fan X, Wen P, Ju Y (2019) Improvement of the crushing effect of waste printed circuit boards by co-heating swelling with organic solvent. J Clean Prod 214:70–78

    Article  CAS  Google Scholar 

  • Han J, Bai X, Yang Q, Wang B, Ma W, Li Y, Zhao Y (2023) Recovery and enrichment of platinum group metals from spent automotive catalysts by pyrometallurgy: a review. Rare Metal Technology 2023:61–72

    Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75(1):57–73

    Article  CAS  Google Scholar 

  • Iannicelli-Zubiani EM, Giani MI, Recanati F, Dotelli G, Puricelli S, Cristiani C (2017) Environmental impacts of a hydrometallurgical process for electronic waste treatment: a life cycle assessment case study. J Clean Prod 140:1204–1216

    Article  CAS  Google Scholar 

  • Isıldar A, Rene ER, van Hullebusch ED, Lens PN (2018) Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour Conserv Recycl 135:296–312

    Article  Google Scholar 

  • Islam A, Ahmed T, Awual MR, Rahman A, Sultana M, Abd Aziz A, Monir MU, Teo SH, Hasan M (2020) Advances in sustainable approaches to recover metals from e-waste-a review. J Clean Prod 244:118815

    Article  CAS  Google Scholar 

  • Jadhao P, Chauhan G, Pant KK, Nigam KDP (2016) Greener approach for the extraction of copper metal from electronic waste. Waste Manage 57:102–112

    Article  CAS  Google Scholar 

  • Jadhav U, Hocheng H (2015) Hydrometallurgical recovery of metals from large printed circuit board pieces. Sci Rep 5(1):1–10

    Article  Google Scholar 

  • Joo SH, ju Shin D, Oh C, Wang JP, Senanayake G, Shin SM (2016) Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithiumion batteries using synergism caused by Versatic 10 acid and LIX 84-I. Hydrometallurgy, 159:65-74.

    Article  CAS  Google Scholar 

  • Javed C, Singh J (2024) Process intensification for sustainable extraction of metals from e-waste: challenges and opportunities. Environ Sci Pollut Res 31(7):9886–9919

    Article  CAS  Google Scholar 

  • Jergensen GV (1999) Copper leaching, solvent extraction, and electrowinning technology. SME. https://doi.org/10.1016/j.mineng.2005.05.005

    Article  Google Scholar 

  • Jiang T, Xu S, Chen J (1993) Electrochemistry of gold leaching with thiosulfate. II. Cathodic behaviour and leaching mechanism of gold. J Central-South Inst Min Metal(china) (people’s Republic of China) 24(2):174–180

    CAS  Google Scholar 

  • Jing-ying L, Xiu-Li X, Wen-quan L (2012) Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manage 32(6):1209–1212

    Article  Google Scholar 

  • Joda NN, Rashchi F (2012) Recovery of ultra fine grained silver and copper from PC board scraps. Sep Purif Technol 92:36–42

    Article  Google Scholar 

  • Kamberović Ž, Romhanji E, Filipović M, Korać M (2009) The recycling of high magnesium aluminum alloys estimation of the most reliable procedure. Metalurgija 15(3):189-200

    Google Scholar 

  • Kamberović Ž, Korać M, Ranitović M (2011) Hydrometallurgical process for extraction of metals from electronic waste, part II: Development of the processes for the recovery of copper from printed circuit boards (PCB). Metalurgija 17(3):139–149

    Google Scholar 

  • Katiyar PK, Randhawa NS (2020) A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques. Int J Refract Hard Met 90:105251

    Article  CAS  Google Scholar 

  • Kaya M (2016a) Recovery of metals from electronic waste by physical and chemical recycling processes. Int J Chem Mole Eng 10(2):259–270

    Google Scholar 

  • Kaya F (2016b) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage 57:64–90

    Article  CAS  Google Scholar 

  • Kaya M (2020) Waste printed circuit board (WPCB) recycling: conventional and emerging technology approach. Encycl Renew Sustain Mater 2020(4):677–694

    Google Scholar 

  • Kellner D (2009) Recycling and recovery. In: Hester RE, Harrison RM (eds) Electronic waste management, design, analysis and application. RSC Publishing, Cambridge, pp 91–110.

  • Korf N, Løvik AN, Figi R, Schreiner C, Kuntz C, Mählitz PM, Rösslein M, Wäger P, Rotter VS (2019) Multi-element chemical analysis of printed circuit boards–challenges and pitfalls. Waste Manage 92:124–136

    Article  CAS  Google Scholar 

  • Kumar A, Saini HS, Kumar S (2018) Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr Microbiol 75:194–201

    Article  CAS  Google Scholar 

  • Lacoste-Bouchet P, Deschênes G, Ghali E (1998) Thiourea leaching of a copper-gold ore using statistical design. Hydrometallurgy 47(2–3):189–203

    Article  CAS  Google Scholar 

  • Li K, Xu Z (2019) A review of current progress of supercritical fluid technologies for e-waste treatment. J Clean Prod 227:794–809

    Article  CAS  Google Scholar 

  • Li J, Wen J, Guo Y, An N, Liang C, Ge Z (2020a) Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy 194:105260

    Article  CAS  Google Scholar 

  • Li Y, Lin M, Ni Z, Yuan Z, Liu W, Ruan J, Tang Y, Qiu R (2020b) Ecological influences of the migration of micro resin particles from crushed waste printed circuit boards on the dumping soil. J Hazard Mater 386:121020

    Article  CAS  Google Scholar 

  • Li A, Oraby E, Eksteen J (2021) Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards. Waste Manage 125:87–97

    Article  CAS  Google Scholar 

  • Li W, Sun J, Ma DF, Liu XL, Li S, Bei JY, Chen T (2024) Dioxin control in the co-processing of waste printed circuit board and copper concentrate with an ausmelt furnace. Aerosol Air Quality Res 24(1):230126

    Article  CAS  Google Scholar 

  • Lin W, Zhang RW, Jang SS, Wong CP, Hong JI (2010) “Organic aqua regia”—powerful liquids for dissolving noble metals. Angew Chem Int Ed 49(43):7929–7932

    Article  CAS  Google Scholar 

  • Liu R, Li J, Ge Z (2016) Review on Chromobacterium violaceum for gold bioleaching from e-waste. Procedia Environ Sci 31:947–953

    Article  Google Scholar 

  • Liu K, Huang S, Jin Y, Ma L, Wang WX, Lam JCH (2022) A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol. J Hazard Mater 433:128702

    Article  CAS  Google Scholar 

  • Macaskie LE, Creamer NJ, Essa AMM, Brown NL (2007) A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap. Biotechnol Bioeng 96(4):631–639

    Article  CAS  Google Scholar 

  • Makovskaya OY, Shevchuk AP, Anikin YV (2020) Perspective method for regeneration of spent solutions from printed circuit boards etching. In: Materials science forum, Trans Tech Publications Ltd.

  • Manikkampatti Palanisamy M, Myneni VR, Gudeta B, Komarabathina S (2022) Toxic metal recovery from waste printed circuit boards: a review of advanced approaches for sustainable treatment methodology. Adv Mater Sci Eng 2022:1-9

    Article  Google Scholar 

  • Martinez-Ballesteros G, Valenzuela-García JL, Gómez-Alvarez A, Encinas-Romero MA, Mejía-Zamudio FA, Rosas-Durazo ADJ, Valenzuela-Frisby R (2021) Recovery of ag, au, and pt from printed circuit boards by pressure leaching. Recycling 6(4):67

    Article  Google Scholar 

  • Moses LB, Petersen FW (2000) Flotation as a separation technique in the coal gold agglomeration process. Miner Eng 13(3):255–264

    Article  CAS  Google Scholar 

  • Murthy DSR, Prasad PM (1996) Leaching of gold and silver from Miller Process dross through non-cyanide leachants. Hydrometallurgy 42(1):27–33

    Article  CAS  Google Scholar 

  • Nayaka GP, Zhang Y, Dong P, Wang D, Zhou Z, Duan J, Li X, Lin Y, Meng Q, Pai KV, Santhosh G (2019) An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. J Environ Chem Eng 7(1):102854

    Article  CAS  Google Scholar 

  • Nguyen TH, Sonu CH, Lee MS (2015) aration of platinum (IV) and palladium (II) from concentrated hydrochloric acid solutions by mixtures of amines with neutral extractants. J Ind Eng Chem 32:238–245

    Article  CAS  Google Scholar 

  • Oguchi M, Murakami S, Sakanakura H, Kida A, Kameya T (2011) A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manage 31(9–10):2150–2160

    Article  Google Scholar 

  • Ogunniyi IO, Vermaak MKG, Groot DR (2009) Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations. Waste Manage 29(7):2140–2146

    Article  CAS  Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manage 32(5):979–990

    Article  CAS  Google Scholar 

  • Petter PMH, Veit HM, Bernardes AM (2014) Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Manage 34(2):475–482

    Article  CAS  Google Scholar 

  • Qi Y, Yi X, Zhang Y, Meng F, Shu J, Xiu F, Sun Z, Sun S, Chen M (2019) Effect of ionic liquid [MIm] HSO 4 on WPCB metal-enriched scraps refined by slurry electrolysis. Environ Sci Pollut Res 26:33260–33268

    Article  CAS  Google Scholar 

  • Qin B, Lin M, Yao Z, Zhu J, Ruan J, Tang Y, Qiu R (2020) A novel approach of accurately rationing adsorbent for capturing pollutants via chemistry calculation: rationing the mass of CaCO3 to capture Br-containing substances in the pyrolysis of nonmetallic particles of waste printed circuit boards. J Hazard Mater 393:122410

    Article  CAS  Google Scholar 

  • Qiu R, Lin M, Ruan J, Fu Y, Hu J, Deng M, Tang Y, Qiu R (2020) Recovering full metallic resources from waste printed circuit boards: arefined review. J Clean Prod 244:118690

    Article  CAS  Google Scholar 

  • Quanyin TAN, Chao DENG, Jinhui LI (2017) Effects of mechanical activation on the kinetics of terbium leaching from waste phosphors using hydrochloric acid. J Rare Earths 35(4):398–405

    Article  Google Scholar 

  • Safarzadeh MS, Bafghi MS, Moradkhani D, Ilkhchi MO (2007) A review on hydrometallurgical extraction and recovery of cadmium from various resources. Miner Eng 20(3):211–220

    Article  Google Scholar 

  • Sakunda P (2013) Strategy of e-waste management. Handbook of solid waste management, 1523–1557

  • Senophiyah-Mary J, Loganath R, Meenambal T (2018) A novel method for the removal of epoxy coating from waste printed circuit board. Waste Manage Res 36(7):645–652

    Article  CAS  Google Scholar 

  • Sethurajan M, van Hullebusch ED, Fontana D, Akcil A, Deveci H, Batinic B, Leal JP, Gasche TA, Kucuker MA, Kuchta K, Neto IFF, Soares HMVM, Chmielarz A (2019) Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes-a review. Crit Rev Environ Sci Technol 49(3):212–275

    Article  CAS  Google Scholar 

  • Shen S, Guishen L, Pan T, He J, Guo Z (2011) Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. J Colloid Interface Sci 364(2):482–489

    Article  CAS  Google Scholar 

  • Sikander A, Kelly S, Kuchta K, Sievers A, Willner T, Hursthouse AS (2022) Chemical and microbial leaching of valuable metals from PCBs and tantalum capacitors of spent mobile phones. Int J Environ Res Public Health 19(16):10006

    Article  CAS  Google Scholar 

  • Somasundaram M, Saravanathamizhan R, Basha CA, Nandakumar V, Begum SN, Kannadasan T (2014) Recovery of copper from scrap printed circuit board: modelling and optimization using response surface methodology. Powder Technol 266:1–6

    Article  CAS  Google Scholar 

  • Song Q, Xia Q, Yuan X, Xu Z (2023) Multi-metal electrochemical response mechanism for direct copper recovery from waste printed circuit boards via sulfate-and chloride-system electrolysis. Resour Conserv Recycl 190:106804

    Article  CAS  Google Scholar 

  • Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage 32(8):1575–1582

    Article  CAS  Google Scholar 

  • Tanısalı E, Özer M, Burat F (2021) Precious metals recovery from waste printed circuit boards by gravity separation and leaching. Miner Process Extr Metall Rev 42(1):24–37

    Article  Google Scholar 

  • Torres R, Lapidus GT (2016) Copper leaching from electronic waste for the improvement of gold recycling. Waste Manage 57:131–139

    Article  CAS  Google Scholar 

  • Trivedi A, Hait S (2020) Bioleaching of selected metals from e-waste using pure and mixed cultures of Aspergillus species. Meas, Anal Remediat Environ Pollut, 271–280

  • Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37

    Article  CAS  Google Scholar 

  • Udayakumar S, Abd Razak MIB, Ismail S (2022) Recovering valuable metals from Waste Printed Circuit Boards (WPCB): a short review. Mater Today: Proc 66:3062–3070

    Google Scholar 

  • Vats MC, Singh SK (2015) Assessment of gold and silver in assorted mobile phone printed circuit boards (PCBs). Waste Manage 45:280–288

    Article  CAS  Google Scholar 

  • Verma A, Trivedi A, Hait S (2020) Extraction of selected metals from high-grade waste printed circuit board using diethylene triamine penta-acetic acid. Urban Mining and Sustainable Waste Management, 49–57

  • Vuyyuru KR, Pant KK, Krishnan VV, Nigam KD (2010) Recovery of nickel from spent industrial catalysts using chelating agents. Ind Eng Chem Res 49(5):2014–2024

    Article  CAS  Google Scholar 

  • Wan J, Sun J, Zhao XL, Le AS, Ren PB, Zhan MX, Chen T (2023) Emission of brominated pollutants from waste printed circuit boards during thermal treatment: a review. Aerosol Air Qual Res 23(12):230135

    Article  CAS  Google Scholar 

  • Wang J, Xu Z (2015) Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control. Environ Sci Technol 49(2):721–733

    Article  CAS  Google Scholar 

  • Wang J, Zeng B, Lv J, Lu Y, Chen H (2020a) Environmentally friendly technology for separating gold from waste printed circuit boards: a combination of suspension electrolysis and a chlorination process. ACS Sustain Chem Eng 8(45):16952–16959

    Article  CAS  Google Scholar 

  • Wang Q, Zhang B, Yu S, Xiong J, Yao Z, Hu B, Yan J (2020b) Waste-printed circuit board recycling: focusing on preparing polymer composites and geopolymers. ACS Omega 5(29):17850–17856

    Article  CAS  Google Scholar 

  • Wang R, Zhang C, Zhao Y, Zhou Y, Ma E, Bai J, Wang J (2021) Recycling gold from printed circuit boards gold-plated layer of waste mobile phones in “mild aqua regia” system. J Clean Prod 278:123597

    Article  CAS  Google Scholar 

  • Won SW, Kotte P, Wei W, Lim A, Yun YS (2014) Biosorbents for recovery of precious metals. Biores Technol 160:203–212

    Article  CAS  Google Scholar 

  • Wu J, Qiu LJ, Chen L, Chen DH (2009) Gold and silver selectively leaching from printed circuit boards scrap with acid thiourea solution. Nonferrous Metals 61:90–93

    CAS  Google Scholar 

  • Wu Y, Zhang Q, Zuo T (2019) Selective recovery of Y and Eu from rare-earth tricolored phosphorescent powders waste via a combined acid-leaching and photo-reduction process. J Clean Prod 226:858–865

    Article  CAS  Google Scholar 

  • Xia M, Bao P, Liu A, Wang M, Shen L, Yu R, Liu Y, Chen M, Li J, Wu X, Qiu G, Zeng W (2018) Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resour, Conserv Recycl 136:267–275

    Article  CAS  Google Scholar 

  • Xie F, Cai T, Ma Y, Li H, Li C, Huang Z, Yuan G (2009) Recovery of Cu and Fe from printed circuit board waste sludge by ultrasound: evaluation of industrial application. J Clean Prod 17(16):1494–1498

    Article  CAS  Google Scholar 

  • Xie X, Luo J, Guan L, Zhong W, Jing C, Wang Y (2021) Cadmium isotope fractionation during leaching with nitrilotriacetic acid. Chem Geol 584:120523

    Article  CAS  Google Scholar 

  • Xiong J, Yu S, Wu D, Lü X, Tang J, Wu W, Yao Z (2020) Pyrolysis treatment of nonmetal fraction of waste printed circuit boards: focusing on the fate of bromine. Waste Manage Res 38(11):1251–1258

    Article  CAS  Google Scholar 

  • Xiu FR, Qi Y, Zhang FS (2015) Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Manage 41:134–141

    Article  CAS  Google Scholar 

  • Xu XL, Li JY (2011) Experimental study of thiourea leaching gold and silver from waste circuit boards. J Qingdao Univ(Engineering & Technology Edition) 26(2):69–73

    CAS  Google Scholar 

  • Xu Q, Chen DH, Chen L, Huang MH (2010) Gold leaching from waste printed circuit board by iodine process. Nonferrous Metals 62(3):88–90

    CAS  Google Scholar 

  • Xu Y, Li J, Liu L (2016) Current status and future perspective of recycling copper by hydrometallurgy from waste printed circuit boards. Procedia Environ Sci 31:162–170

    Article  Google Scholar 

  • Yang X, Moats MS, Miller JD, Wang X, Shi X, Xu H (2011) Thiourea–thiocyanate leaching system for gold. Hydrometallurgy 106(1–2):58–63

    Article  CAS  Google Scholar 

  • Yao Z, Ling TC, Sarker PK, Su W, Liu J, Wu W, Tang J (2018) Recycling difficult-to-treat e-waste cathode-ray-tube glass as construction and building materials: a critical review. Renew Sustain Energy Rev 81:595–604

    Article  CAS  Google Scholar 

  • Yao Z, Xiong J, Yu S, Su W, Wu W, Tang J, Wu D (2020) Kinetic study on the slow pyrolysis of nonmetal fraction of waste printed circuit boards (NMF-WPCBs). Waste Manage Res 38(8):903–910

    Article  CAS  Google Scholar 

  • Yazici EY, Deveci HACI (2014) Ferric sulphate leaching of metals from waste printed circuit boards. Int J Miner Process 133:39–45

    Article  CAS  Google Scholar 

  • Yazici EY, Deveci HACI (2015) Cupric chloride leaching (HCl–CuCl2–NaCl) of metals from waste printed circuit boards (WPCBs). Int J Miner Process 134:89–96

    Article  CAS  Google Scholar 

  • Yu ZX, Zhou BN, Lu ZH (1999) Hydro-electro metallurgical process for recovering scrap from cuprous chloride solution. Shanghai Nonferrous Metals 2:24–28

    Google Scholar 

  • Yu S, Su W, Wu D, Yao Z, Liu J, Tang J, Wu W (2019) Thermal treatment of flame retardant plastics: a case study on a waste TV plastic shell sample. Sci Total Environ 675:651–657

    Article  CAS  Google Scholar 

  • Zhang X, Chen L, Fang Z (2009) Review on gold leaching from PCB with non-cyanide leach reagents. Nonferrous Metals 61(1):72–72

    CAS  Google Scholar 

  • Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci 16:560–568

    Article  Google Scholar 

  • Zhang S, Li Y, Wang R, Xu Z, Wang B, Chen S, Chen M (2017) Superfine copper powders recycled from concentrated metal scraps of waste printed circuit boards by slurry electrolysis. J Clean Prod 152:1–6

    Article  CAS  Google Scholar 

  • Zhao S, Jia L, Duo L (2016) Combining nitrilotriacetic acid and permeable barriers for enhanced phytoextraction of heavy metals from municipal solid waste compost by lolium perenne and reduced metal leaching. J Environ Qual 45(3):933–939

    Article  CAS  Google Scholar 

  • Zhihui WANG, Shuqi YUAN, Jinghao LIU, Yufeng WU, Jiamei YU (2021) Research progress of hydrometallurgy technology for leaching precious metals in waste printed circuit board. Environ Chem 3:886–895

    Google Scholar 

  • Zhong F, Li D, Wei J (2006) Experimental study on leaching gold in printed circuit boards scrap with thiourea. Non-Ferrous Metals Recycling and Utilization 6:25–27

    Google Scholar 

  • Zhou W, Chen Y, Cheng H, Liu X, Tian Z, Zhang L, Zhou H (2020) A novel process for the biological detoxification of non-metal residue from waste copper clad laminate treatment: from lab to pilot scale. J Clean Prod 255:120116

    Article  CAS  Google Scholar 

  • Zhou QFZW, Zhu W (2003) Recovery of gold from waste computer and its accessories. China Resour Compr Util 7:31–35

    Google Scholar 

  • Zhu P, Chen Y, Wang LY, Zhou M, Zhou J (2013) The separation of waste printed circuit board by dissolving bromine epoxy resin using organic solvent. Waste Manage 33(2):484–488

    Article  CAS  Google Scholar 

  • Zhu P, Tang J, Tao Q, Wang Y, Wang J, Li Z, Cao Z, Qian G, Theiss F, Frost RL (2019) The kinetics study of dissolving SnPb solder by hydrometallurgy. Environ Eng Sci 36(9):1236–1243

    Article  CAS  Google Scholar 

  • Zou L, Chen J, Pan X (1998) Solvent extraction of rhodium from aqueous solution of Rh (III)–Sn (II)–Cl− system by TBP. Hydrometallurgy 50(3):193–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, South Ural State University, Chelyabinsk, Russian Federation.

Funding

No funding information.

Author information

Authors and Affiliations

Authors

Contributions

Shanmugavel Sudarsan: Conceptualization, Methodology, Writing- Original draft preparation, Investigation. Mariappan Anandkumar: Reviewing and Editing. E. A. Trofimov: Reviewing and Supervision.

Corresponding author

Correspondence to S. Sudarsan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudarsan, S., Anandkumar, M. & Trofimov, E.A. Survey of diverse hydrometallurgy techniques for recovering and extracting valuable metals from PCB waste: an overview. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05755-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05755-w

Keywords

Navigation