Skip to main content

Advertisement

Log in

PAQR5 inhibits the growth and metastasis of clear cell renal cell carcinoma by suppressing the JAK/STAT3 signaling pathway

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) has a high degree of malignancy and poor overall prognosis in advanced and metastatic patients. Therefore, it is of great significance to find new prognostic biomarkers and therapeutic targets for ccRCC. The expression of progestin and adipoQ receptor family member 5 (PAQR5) is significantly downregulated in ccRCC compared with normal tissues, but its specific mechanism and potential biological function in ccRCC remain unclear.

Methods

The expression pattern of PAQR5 and the correlation between the PAQR5 expression and clinicopathological parameters and various survival periods in ccRCC patients were analyzed by using multiple public databases and ccRCC tissues chip. Its prognostic value was analyzed by univariate/multivariate Cox regression. In addition, MTT assay, EdU staining assay, flow cytometry, wound healing assay, transwell migration and invasion assay, colony formation assay, immunofluorescence assay, and a xenograft tumor model were conducted to assess the biological function of PAQR5 in ccRCC in vitro and in vivo.

Results

Our results indicated that the downregulation of PAQR5 was demonstrated in ccRCC tumor tissues and associated with poorer OS, DSS, and PFI. Meanwhile, the univariate/multivariate Cox regression analysis confirmed that PAQR5 might serve as an independent prognostic factor for ccRCC, and its low expression was tightly correlated with tumor progression and distant metastasis. Mechanistically, a series of gain- and loss-of-function assay revealed that PAQR5 could suppress the ccRCC proliferation, invasion, metastasis, and tumorigenicity in vitro and in vivo by inhibiting the JAK/STAT3 signaling pathway.

Conclusion

Our study revealed the tumor suppressor role of PAQR5 in ccRCC. PAQR5 is a valuable prognostic biomarker for ccRCC and may provide new strategies for clinical targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated/analyzed during the current study are available.

Abbreviations

ccRCC:

clear cell renal cell carcinoma

PAQR5:

progestin and adipoQ receptor family member 5

TKI:

tyrosine kinase inhibitor

ICI:

immune checkpoint inhibitor

JAK2:

Janus kinase 2

STAT3:

signal transducer and activator of transcription 3

NF-κB:

nuclear factor-kappa B

EMT:

epithelial-mesenchymal transition

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

5-Aza:

5-Aza-2’-deoxycytidine

GSEA:

gene set enrichment analysis

FBS:

fetal bovine serum

HR:

hazard ratio

CI:

confidence interval

KIRC:

kidney renal clear cell carcinoma

References

  1. J.J. Hsieh, M.P. Purdue, S. Signoretti, C. Swanton, L. Albiges, M. Schmidinger et al., Renal cell carcinoma. Nat. Reviews Disease Primers 3, 17009 (2017)

    PubMed  Google Scholar 

  2. J. Gong, M.C. Maia, N. Dizman, A. Govindarajan, S.K. Pal, Metastasis in renal cell carcinoma: Biology and implications for therapy. Asian J. Urol. 3, 286–292 (2016)

    PubMed  PubMed Central  Google Scholar 

  3. A. Znaor, J. Lortet-Tieulent, M. Laversanne, A. Jemal, F. Bray, International variations and trends in renal cell carcinoma incidence and mortality. Eur. Urol 67, 519–530 (2015)

    PubMed  Google Scholar 

  4. M.S. Fernandes, V. Pierron, D. Michalovich, S. Astle, S. Thornton, H. Peltoketo et al., Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J. Endocrinol 187, 89–101 (2005)

    CAS  PubMed  Google Scholar 

  5. Y.T. Tang, T. Hu, M. Arterburn, B. Boyle, J.M. Bright, P.C. Emtage et al., PAQR proteins: a novel membrane receptor family defined by an ancient 7-transmembrane pass motif. J. Mol. Evol 61, 372–380 (2005)

    CAS  PubMed  Google Scholar 

  6. Y. Zhu, J. Bond, P. Thomas, Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. U.S.A 100, 2237–2242 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. L. Feng, X. Xie, Q. Ding, X. Luo, J. He, F. Fan et al., Spatial regulation of raf kinase signaling by RKTG. Proc. Natl. Acad. Sci. U.S.A 104, 14348–14353 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Zhu, R.N. Hanna, M.J. Schaaf, H.P. Spaink, P. Thomas, Candidates for membrane progestin receptors–past approaches and future challenges. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 381–389 (2008)

    Google Scholar 

  9. P. Thomas, Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front. Neuroendocr 29, 292–312 (2008)

    CAS  Google Scholar 

  10. J.L. Smith, B.R. Kupchak, I. Garitaonandia, L.K. Hoang, A.S. Maina, L.M. Regalla et al., Heterologous expression of human mPRalpha, mPRbeta and mPRgamma in yeast confirms their ability to function as membrane progesterone receptors. Steroids 73, 1160–1173 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Z. Cai, H. Chen, J. Bai, Y. Zheng, J. Ma, X. Cai et al., Copy number variations of CEP63, FOSL2 and PAQR6 serve as Novel Signatures for the prognosis of bladder Cancer. Front. Oncol. 11, 674933 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Li, Z. Lin, Q. Liang, Y. Hu, W.F. Xu, PAQR6 expression enhancement suggests a worse prognosis in prostate Cancer patients. Open. life sciences 13, 511–517 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Pang, J. Dong, P. Thomas, Characterization, neurosteroid binding and brain distribution of human membrane progesterone receptors δ and ϵ (mPRδ and mPRϵ) and mPRδ involvement in neurosteroid inhibition of apoptosis. Endocrinology 154, 283–295 (2013)

    CAS  PubMed  Google Scholar 

  14. M.R. Paul, T.C. Pan, D.K. Pant, N.N. Shih, Y. Chen, K.L. Harvey et al., Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J. Clin. Investig 130, 4252–4265 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Sinreih, T. Knific, P. Thomas, S. Frković Grazio, T.L. Rižner, Membrane progesterone receptors β and γ have potential as prognostic biomarkers of endometrial cancer. J. Steroid Biochem. Mol. Biol 178, 303–311 (2018)

    CAS  PubMed  Google Scholar 

  16. P. Valadez-Cosmes, E.R. Vázquez-Martínez, M. Cerbón, I. Camacho-Arroyo, Membrane progesterone receptors in reproduction and cancer. Mol. Cell. Endocrinol 434, 166–175 (2016)

    CAS  PubMed  Google Scholar 

  17. M. Yang, J.C. Li, C. Tao, S. Wu, B. Liu, Q. Shu et al., PAQR6 upregulation is Associated with AR Signaling and Unfavorite Prognosis in prostate cancers. Biomolecules 11, 1383 (2021)

  18. Y. Satomi, S. Takai, I. Kondo, S. Fukushima, A. Furuhata, Postoperative prophylactic use of progesterone in renal cell carcinoma. J. Urol 128, 919–922 (1982)

    CAS  PubMed  Google Scholar 

  19. C. Tao, W. Liu, X. Yan, M. Yang, S. Yao, Q. Shu et al., PAQR5 expression is suppressed by TGFβ1 and Associated with a poor survival outcome in Renal Clear Cell Carcinoma. Front. Oncol. 11, 827344 (2022)

  20. J.J. O’Shea, S.M. Holland, L.M. Staudt, JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med 368, 161–170 (2013)

    PubMed  PubMed Central  Google Scholar 

  21. S. Dambal, M. Alfaqih, S. Sanders, E. Maravilla, A. Ramirez-Torres, G.C. Galvan et al., 27-Hydroxycholesterol impairs plasma membrane lipid raft signaling as evidenced by inhibition of IL6-JAK-STAT3 signaling in prostate Cancer cells. Mol. cancer research: MCR 18, 671–684 (2020)

    CAS  PubMed  Google Scholar 

  22. C. Xiao, W. Zhang, M. Hua, H. Chen, B. Yang, Y. Wang et al., RNF7 inhibits apoptosis and sunitinib sensitivity and promotes glycolysis in renal cell carcinoma via the SOCS1/JAK/STAT3 feedback loop. Cell. Mol. Biol. Lett 27, 36 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Yao, H. Ye, Z. Qi, L. Mo, Q. Yue, A. Baral et al., B7-H4(B7x)-Mediated cross-talk between glioma-initiating cells and macrophages via the IL6/JAK/STAT3 pathway lead to poor prognosis in Glioma Patients. Clin. cancer research: official J. Am. Association Cancer Res. 22, 2778–2790 (2016)

    CAS  Google Scholar 

  24. M.S. Pan, H. Wang, K.H. Ansari, X.P. Li, W. Sun, Y.Z. Fan, Gallbladder cancer-associated fibroblasts promote vasculogenic mimicry formation and tumor growth in gallbladder cancer via upregulating the expression of NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 signal pathway. J. Exp. Clin. Cancer Res. 39, 234 (2020)

    CAS  PubMed Central  Google Scholar 

  25. Y. Chen, J. Wang, X. Wang, X. Liu, H. Li, Q. Lv et al., STAT3, a poor survival Predicator, is Associated with Lymph Node Metastasis from breast Cancer. J. breast cancer 16, 40–49 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. K.C. Chiang, K.S. Chang, S.Y. Hsu, H.C. Sung, T.H. Feng, M. Chao et al., Human Heme Oxygenase-1 Induced by Interleukin-6 via JAK/STAT3 pathways is a tumor suppressor gene in Hepatoma cells. Antioxidants (Basel) 9 (2020)

  27. D.E. Johnson, R.A. O’Keefe, J.R. Grandis, Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol 15, 234–248 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Zhang, H. Du, L. Wang, Y. Yue, P. Zhang, Z. Huang et al., Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chemico-Biol. Interact 320, 109022 (2020)

    CAS  Google Scholar 

  29. M. Zhang, L. Wang, Y. Yue, L. Zhang, T. Liu, M. Jing et al., ITPR3 facilitates tumor growth, metastasis and stemness by inducing the NF-ĸB/CD44 pathway in urinary bladder carcinoma. J. experimental Clin. Cancer Res. 40, 65 (2021)

    PubMed Central  Google Scholar 

  30. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    CAS  PubMed  Google Scholar 

  31. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022. Cancer J. Clin 72, 7–33 (2022)

    Google Scholar 

  32. C.M. Díaz-Montero, B.I. Rini, J.H. Finke, The immunology of renal cell carcinoma. Nat. Rev. Nephrol 16, 721–735 (2020)

    PubMed  Google Scholar 

  33. W. Rathmell, R. Rumble, P. Van Veldhuizen, H. Al-Ahmadie, H. Emamekhoo, R. Hauke et al., Management of metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. J. Clin. oncology: official J. Am. Soc. Clin. Oncol. 40, 2957–2995 (2022)

    CAS  Google Scholar 

  34. M. Sendur, Adjuvant immunotherapy for renal cell carcinoma. Lancet Oncol 23, 1110–1111 (2022)

    PubMed  Google Scholar 

  35. R. Motzer, T. Powles, M. Burotto, B. Escudier, M. Bourlon, A. Shah et al., Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol 23, 888–898 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Vano, R. Elaidi, M. Bennamoun, C. Chevreau, D. Borchiellini, D. Pannier et al., Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): a biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol 23, 612–624 (2022)

    CAS  PubMed  Google Scholar 

  37. R. Motzer, B. Alekseev, S.Y. Rha, C. Porta, M. Eto, T. Powles et al., Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med 384, 1289–1300 (2021)

    CAS  PubMed  Google Scholar 

  38. S.L. Petersen, K.A. Intlekofer, P.J. Moura-Conlon, D.N. Brewer, Del Pino Sans J & Lopez J A, Novel progesterone receptors: neural localization and possible functions. Front. NeuroSci 7, 164 (2013)

    PubMed  PubMed Central  Google Scholar 

  39. T. Tokumoto, M. Tokumoto, T. Oshima, K. Shimizuguchi, T. Fukuda, E. Sugita et al., Characterization of multiple membrane progestin receptor (mPR) subtypes from the goldfish ovary and their roles in the induction of oocyte maturation. Gen. Comp. Endocrinol 177, 168–176 (2012)

    CAS  PubMed  Google Scholar 

  40. W. Qi, R. Li, L. Li, S. Li, H. Zhang, H. Tian, Identification of key genes associated with esophageal adenocarcinoma based on bioinformatics analysis. Ann. Transl. Med. 9, 1711 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. N.J. Charles, P. Thomas, C.A. Lange, Expression of membrane progesterone receptors (mPR/PAQR) in ovarian cancer cells: implications for progesterone-induced signaling events. Horm. cancer 1, 167–176 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. E. Beerling, D. Seinstra, E. de Wit, L. Kester, D. van der Velden, C. Maynard et al., Plasticity between epithelial and mesenchymal States Unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. C.L. Chaffer, B.P. San Juan, E. Lim, Weinberg, R A, EMT, cell plasticity and metastasis. Cancer Metastasis Rev 35, 645–654 (2016)

    PubMed  Google Scholar 

  44. W.H. Chang, D. Forde, A.G. Lai, Dual prognostic role of 2-oxoglutarate-dependent oxygenases in ten cancer types: implications for cell cycle regulation and cell adhesion maintenance. Cancer Commun. (London England) 39, 23 (2019)

    Google Scholar 

  45. Y. Şenbabaoğlu, R.S. Gejman, A.G. Winer, M. Liu, E.M. Van Allen, G. de Velasco et al., Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol 17, 231 (2016)

    PubMed  PubMed Central  Google Scholar 

  46. K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres-Garcia et al., Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun 4, 2612 (2013)

    PubMed  Google Scholar 

  47. J. Downward, Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003)

    CAS  PubMed  Google Scholar 

  48. K. Paukku, O. Silvennoinen, STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 15, 435–455 (2004)

    CAS  PubMed  Google Scholar 

  49. L. Tong, Y. Yuan, S. Wu, Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers. Adv. Drug Deliv. Rev 81, 1–15 (2015)

    CAS  PubMed  Google Scholar 

  50. R. Siersbæk, V. Scabia, S. Nagarajan, I. Chernukhin, E.K. Papachristou, R. Broome et al., IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast Cancer metastasis. Cancer Cell. 38, 412–423.e419 (2020)

    PubMed  PubMed Central  Google Scholar 

  51. V. Atsaves, N. Tsesmetzis, D. Chioureas, L. Kis, V. Leventaki, E. Drakos et al., PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31, 1633–1637 (2017)

    CAS  PubMed  Google Scholar 

  52. J.W. Austin, P. Lu, P. Majumder, R. Ahmed, J.M. Boss, STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J. Immunol. 192, 4876–4886 (2014)

  53. L.L. Bu, G.T. Yu, L. Wu, L. Mao, W.W. Deng, J.F. Liu et al., STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res 96, 1027–1034 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. C. Zhan, C. Xu, J. Chen, C. Shen, J. Li, Z. Wang et al., Development and validation of an IL6/JAK/STAT3-Related gene signature to predict overall survival in Clear Cell Renal Cell Carcinoma. Front. Cell. Dev. Biol. 9, 686907 (2021)

Download references

Acknowledgements

We acknowledge and appreciate our colleagues for their valuable efforts and comments on this paper.

Funding

This work was supported by the National Natural Science Foundation of China (No: 81572520, 82103563). Key research and development plan in Shaanxi province (No. 2020SF-123 and 2020SF-195). Medical research program of department of science and technology of Xi’an, Shaanxi Province (No.2019115713 YX012SF048 (4)).

Author information

Authors and Affiliations

Authors

Contributions

L. W, and Y.Y. Y performed the experiments. L. Z, M.X. J, and Y.Y. Y analyzed and interpreted the data. L. W and M.Z. Z wrote the manuscript. M.H. M, Y. L, and C. L provided critical suggestions. S. X, K. W, and X.Y. W revised the manuscript critically for important intellectual content. J.H. F and M.Z. Z designed and supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jinhai Fan or Mengzhao Zhang.

Ethics declarations

Ethics approval and consent to participate

This study was approved and supervised by the Ethical Committee of the First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China. The study was conducted following the Declaration of Helsinki principles.

Competing interests

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lu Wang and Yangyang Yue have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yue, Y., Zhang, L. et al. PAQR5 inhibits the growth and metastasis of clear cell renal cell carcinoma by suppressing the JAK/STAT3 signaling pathway. Cell Oncol. 46, 1317–1332 (2023). https://doi.org/10.1007/s13402-023-00813-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00813-w

Keywords

Navigation