Skip to main content

Advertisement

Log in

A review on gene regulatory network reconstruction algorithms based on single cell RNA sequencing

  • Review
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Understanding gene regulatory networks (GRNs) is essential for unraveling the molecular mechanisms governing cellular behavior. With the advent of high-throughput transcriptome measurement technology, researchers have aimed to reverse engineer the biological systems, extracting gene regulatory rules from their outputs, which represented by gene expression data. Bulk RNA sequencing, a widely used method for measuring gene expression, has been employed for GRN reconstruction. However, it falls short in capturing dynamic changes in gene expression at the level of individual cells since it averages gene expression across mixed cell populations.

Objective

In this review, we provide an overview of 15 GRN reconstruction tools and discuss their respective strengths and limitations, particularly in the context of single cell RNA sequencing (scRNA-seq).

Methods

Recent advancements in scRNA-seq break new ground of GRN reconstruction. They offer snapshots of the individual cell transcriptomes and capturing dynamic changes. We emphasize how these technological breakthroughs have enhanced GRN reconstruction.

Conclusion

GRN reconstructors can be classified based on their requirement for cellular trajectory, which represents a dynamical cellular process including differentiation, aging, or disease progression. Benchmarking studies support the superiority of GRN reconstructors that do not require trajectory analysis in identifying regulator-target relationships. However, methods equipped with trajectory analysis demonstrate better performance in identifying key regulatory factors. In conclusion, researchers should select a suitable GRN reconstructor based on their specific research objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aibar S, González-Blas CB, Moerman T et al (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akers K, Murali TM (2021) Gene regulatory network inference in single-cell biology. Curr Opin Syst Biol 26:87–97

    Article  CAS  Google Scholar 

  • Alvarez-Buylla ER, Benítez M, Dávila EB et al (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10:83–91

    Article  CAS  PubMed  Google Scholar 

  • Aytes A, Mitrofanova A, Lefebvre C et al (2014) Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell 25:638–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 52(5):101–113

    Article  Google Scholar 

  • Basso K, Margolin AA, Stolovitzky G et al (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 374(37):382–390

    Article  Google Scholar 

  • Bravo González-Blas C, De Winter S, Hulselmans G et al (2023) SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat Methods 2023:1–13

    Google Scholar 

  • Buenrostro JD, Wu B, Litzenburger UM et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nat 5237561(523):486–490

    Article  Google Scholar 

  • Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput. https://doi.org/10.1142/9789814447331_0040

    Article  PubMed  Google Scholar 

  • Canac R, Cimarosti B, Girardeau A et al (2022) Deciphering transcriptional networks during human cardiac development. Cells 11:3915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carro MS, Lim WK, Alvarez MJ et al (2009) The transcriptional network for mesenchymal transformation of brain tumours. Nat 4637279(463):318–325

    Google Scholar 

  • Chan TE, Stumpf MPH, Babtie AC (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5:251–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Yin Y, Zhang A et al (2022) Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun 131(13):1–22

    Google Scholar 

  • Cho KH, Choo SM, Jung SH et al (2007) Reverse engineering of gene regulatory networks. IET Syst Biol 1:149–163

    Article  CAS  PubMed  Google Scholar 

  • Creighton H, Waddington CH (2006) The Strategy of the Genes. AIBS Bull

  • Cusanovich DA, Daza R, Adey A et al (2015) Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande A, Chu LF, Stewart R, Gitter A (2022) Network inference with Granger causality ensembles on single-cell transcriptomics. Cell Rep 38:110333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc 15:1484–1506

    Article  CAS  PubMed  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Fiers MWEJ, Minnoye L, Aibar S et al (2018) Mapping gene regulatory networks from single-cell omics data. Brief Funct Genom 17:246–254

    Article  CAS  Google Scholar 

  • Frankowski PCA, Vert JP (2020) Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference. Bioinformatics 36:4774–4780

    Article  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  Google Scholar 

  • Gerstein MB, Kundaje A, Hariharan M et al (2012) Architecture of the human regulatory network derived from ENCODE data Supplementary Information. Nature 489:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good CR, Aznar MA, Kuramitsu S et al (2021) An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184:6081-6100.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424

    Article  Google Scholar 

  • Greenfield A, Madar A, Ostrer H, Bonneau R (2010) DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 5:e13397

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartemink AJ (2005) Reverse engineering gene regulatory networks. Nat Biotechnol 23:554–555

    Article  CAS  PubMed  Google Scholar 

  • Hlaváčková-Schindler K, Paluš M, Vejmelka M, Bhattacharya J (2007) Causality detection based on information-theoretic approaches in time series analysis. Phys Rep 441:1–46

    Article  Google Scholar 

  • Hormoz S, Singer ZS, Linton JM et al (2016) Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Syst 3:419–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One 5:e12776

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Arnold C, Claringbould A et al (2023) GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks. Mol Syst Biol 19:e11627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamimoto K, Stringa B, Hoffmann CM et al (2023) Dissecting cell identity via network inference and in silico gene perturbation. Nat 614:742–751

    Article  CAS  Google Scholar 

  • Kim JK, Forger DB (2012) A mechanism for robust circadian timekeeping via stoichiometric balance. Mol Syst Biol 8:630

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kim J, Cho K-H (2007) Inferring gene regulatory networks from temporal expression profiles under time-delay and noise. Comput Biol Chem 31:239–245

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park S-M, Cho K-H (2013) Discovery of a kernel for controlling biomolecular regulatory networks. Sci Rep 3:2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jakobsen ST, Natarajan KN, Won K (2020) TENET: gene network reconstruction using transfer entropy reveals key regulatory factors from single cell transcriptomic data. Nucleic Acids Res 49:e1

    Article  PubMed Central  Google Scholar 

  • Kim D, Kim J, Yu YS et al (2022) Systemic approaches using single cell transcriptome reveal that C/EBPγ regulates autophagy under amino acid starved condition. Nucleic Acids Res 50:7298–7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide T, Hayata T, Cho KWY (2005) Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci USA 102:4943–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620

    Article  CAS  PubMed  Google Scholar 

  • Kuppe C, Ibrahim MM, Kranz J et al (2020) Decoding myofibroblast origins in human kidney fibrosis. Nat 589:281–286

    Article  Google Scholar 

  • La Manno G, Soldatov R, Zeisel A et al (2018) RNA velocity of single cells. Nature 560:494–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Labonté B, Engmann O, Purushothaman I et al (2017) Sex-specific transcriptional signatures in human depression. Nat Med 239(23):1102–1111

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:1–13

    Article  Google Scholar 

  • Laslo P, Spooner CJ, Warmflash A et al (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–766

    Article  CAS  PubMed  Google Scholar 

  • Levine M, Davidson EH (2005) Gene regulatory networks for development. Proc Natl Acad Sci USA 102:4936–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Long T, Lu Y et al (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci 101:4781–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Santpere G, Kawasawa YI et al (2018) Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science. https://doi.org/10.1126/science.aat7615

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Virgilio MC, Collins KL (2022) Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction. Nat Biotechnol 413(41):387–398

    Google Scholar 

  • Liao M, Liu Y, Yuan J et al (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 266(26):842–844

    Article  Google Scholar 

  • Liu Z-P (2015) Reverse engineering of genome-wide gene regulatory networks from gene expression data. Curr Genom 16:3–22

    Article  Google Scholar 

  • Liu X, Huang J, Chen T et al (2008) Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res 1812(18):1177–1189

    Article  Google Scholar 

  • Liu Z, Wang L, Welch JD et al (2017) Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizier JT (2014) JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front Robot AI 1:11

    Article  Google Scholar 

  • Llonch S, Barragán M, Nieto P et al (2021) Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 20:e13360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh YH, Wu Q, Chew JL et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  CAS  PubMed  Google Scholar 

  • Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma W, Lai L, Ouyang Q, Tang C (2006) Robustness and modular design of the Drosophila segment polarity network. Mol Syst Biol 2:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Marbach D, Costello JC, Küffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 98(9):796–804

    Article  Google Scholar 

  • Margolin AA, Nemenman I, Basso K et al (2006) ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform 7:S7

    Article  Google Scholar 

  • Matsumoto H, Kiryu H, Furusawa C et al (2017) SCODE: An efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33:2314–2321

    Article  PubMed  PubMed Central  Google Scholar 

  • Moerman T, Aibar Santos S, Bravo González-Blas C et al (2019) GRNBoost2 and Arboreto: Efficient and scalable inference of gene regulatory networks. Bioinformatics 35:2159–2161

    Article  CAS  PubMed  Google Scholar 

  • Moignard V, Woodhouse S, Haghverdi L et al (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morabito S, Miyoshi E, Michael N et al (2021) Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet 538(53):1143–1155

    Article  Google Scholar 

  • Morey R, Farah O, Kallol S et al (2021) Transcriptomic drivers of differentiation, maturation, and polyploidy in human extravillous trophoblast. Front Cell Dev Biol 9:702046

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrissey ER, Juárez MA, Denby KJ et al (2010) On reverse engineering of gene interaction networks using time course data with repeated measurements. Bioinformatics 26:2305–2312

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Tran D, Tran B et al (2021) A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief Bioinform 22:1–15

    Article  Google Scholar 

  • Oliveri P, Davidson EH (2004) Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 14:351–360

    Article  CAS  PubMed  Google Scholar 

  • Papili Gao N, Ud-Dean SMM, Gandrillon O, Gunawan R (2018) SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 34:258–266

    Article  PubMed  Google Scholar 

  • Polynikis A, Hogan SJ, di Bernardo M (2009) Comparing different ODE modelling approaches for gene regulatory networks. J Theor Biol 261:511–530

    Article  CAS  PubMed  Google Scholar 

  • Pratapa A, Jalihal AP, Law JN et al (2020) Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods 17:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu X, Rahimzamani A, Wang L et al (2020) Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst 10:265–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Castillo M, Blanco D, Tienda-Luna IM et al (2018) A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34:964–970

    Article  CAS  PubMed  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464

    Article  CAS  PubMed  Google Scholar 

  • Sneppen K, Micheelsen MA, Dodd IB (2008) Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Mol Syst Biol 4:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Specht AT, Li J (2017) LEAP: Constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33:764–766

    Article  CAS  PubMed  Google Scholar 

  • Stathopoulos A, Levine M (2002) Dorsal gradient networks in the Drosophila embryo. Dev Biol 246:57–67

    Article  CAS  PubMed  Google Scholar 

  • Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99:12795–12800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng G, Kim J, Won KJ (2021) VeTra: a tool for trajectory inference based on RNA velocity. Bioinformatics 37:3609–3513

    Article  Google Scholar 

  • Woodhouse S, Piterman N, Wintersteiger CM et al (2018) SCNS: A graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst Biol 12:1–7

    Article  Google Scholar 

  • Xie X, Shi Q, Wu P et al (2020) Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat Immunol 219(21):1119–1133

    Article  Google Scholar 

  • Zappia L, Phipson B, Oshlack A (2018) Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLOS Comput Biol 14:e1006245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1128

    Article  Google Scholar 

  • Zheng L, Qin S, Si W et al (2021) Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. https://doi.org/10.1126/science.abe6474

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermannova O, Ferreira AG, Ascic E et al (2023) Restoring tumor immunogenicity with dendritic cell reprogramming. Sci Immunol. https://doi.org/10.1126/sciimmunol.add4817

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A1A10044154 and 2021M3H9A2096988).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daewon Lee or Junil Kim.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Choi, H., Lee, D. et al. A review on gene regulatory network reconstruction algorithms based on single cell RNA sequencing. Genes Genom 46, 1–11 (2024). https://doi.org/10.1007/s13258-023-01473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-023-01473-8

Keywords

Navigation