Skip to main content
Log in

The Insular Cortex: An Interface Between Sensation, Emotion and Cognition

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The insula is a complex brain region central to the orchestration of taste perception, interoception, emotion, and decision-making. Recent research has shed light on the intricate connections between the insula and other brain regions, revealing the crucial role of this area in integrating sensory, emotional, and cognitive information. The unique anatomical position and extensive connectivity allow the insula to serve as a critical hub in the functional network of the brain. We summarize its role in interoceptive and exteroceptive sensory processing, illustrating insular function as a bridge connecting internal and external experiences. Drawing on recent research, we delineate the insular involvement in emotional processes, highlighting its implications in psychiatric conditions, such as anxiety, depression, and addiction. We further discuss the insular contributions to cognition, focusing on its significant roles in time perception and decision-making. Collectively, the evidence underscores the insular function as a dynamic interface that synthesizes diverse inputs into coherent subjective experiences and decision-making processes. Through this review, we hope to highlight the importance of the insula as an interface between sensation, emotion, and cognition, and to inspire further research into this fascinating brain region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Contreras M, Ceric F, Torrealba F. Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 2007, 318: 655–658.

    Article  CAS  PubMed  Google Scholar 

  2. Gogolla N. The insular cortex. Curr Biol 2017, 27: R580–R586.

    Article  CAS  PubMed  Google Scholar 

  3. Ibañez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage in humans. Brain Struct Funct 2010, 214: 397–410.

    Article  PubMed  Google Scholar 

  4. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB. A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 2010, 214: 519–534.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maffei A, Haley M, Fontanini A. Neural processing of gustatory information in insular circuits. Curr Opin Neurobiol 2012, 22: 709–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naqvi NH, Bechara A. The hidden island of addiction: The insula. Trends Neurosci 2009, 32: 56–67.

    Article  CAS  PubMed  Google Scholar 

  7. Deng H, Xiao X, Yang T, Ritola K, Hantman A, Li Y. A genetically defined insula-brainstem circuit selectively controls motivational vigor. Cell 2021, 184: 6344-6360.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerezoudis P, Howe CL, Wu LJ, Lundstrom BN, Van Gompel JJ. Insula and the Immune System: More than mere Co-existence? Neurosci Bull 2022, 38: 1271–1273.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020, 11: 640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uddin LQ, Nomi JS, Hébert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human Insula. J Clin Neurophysiol 2017, 34: 300–306.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 2009, 10: 59–70.

    Article  CAS  PubMed  Google Scholar 

  12. Craig AD. Interoception: The sense of the physiological condition of the body. Curr Opin Neurobiol 2003, 13: 500–505.

    Article  CAS  PubMed  Google Scholar 

  13. Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci 2009, 13: 334–340.

    Article  PubMed  Google Scholar 

  14. Chang LJ, Yarkoni T, Khaw MW, Sanfey AG. Decoding the role of the insula in human cognition: Functional parcellation and large-scale reverse inference. Cereb Cortex 2013, 23: 739–749.

    Article  PubMed  Google Scholar 

  15. Gehrlach DA, Weiand C, Gaitanos TN, Cho E, Klein AS, Hennrich AA, et al. A whole-brain connectivity map of mouse insular cortex. Elife 2020, 9: e55585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I. The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci 2015, 18: 499–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaminade T, Spatola N. Perceived facial happiness during conversation correlates with insular and hypothalamus activity for humans, not robots. Front Psychol 2022, 13: 871676.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kesner RP, Gilbert PE. The role of the agranular insular cortex in anticipation of reward contrast. Neurobiol Learn Mem 2007, 88: 82–86.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sheffield JM, Huang AS, Rogers BP, Blackford JU, Heckers S, Woodward ND. Insula sub-regions across the psychosis spectrum: Morphology and clinical correlates. Transl Psychiatry 2021, 11: 346.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Uddin LQ, Kinnison J, Pessoa L, Anderson ML. Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 2014, 26: 16–27.

    Article  PubMed  Google Scholar 

  21. Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal Ganglia circuitry. Nature 2010, 466: 622–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klaus A, Alves da Silva J, Costa RM. What, if, and when to move: Basal Ganglia circuits and self-paced action initiation. Annu Rev Neurosci 2019, 42: 459–483.

    Article  CAS  PubMed  Google Scholar 

  23. Tai LH, Lee AM, Benavidez N, Bonci A, Wilbrecht L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 2012, 15: 1281–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao X, Deng H, Furlan A, Yang T, Zhang X, Hwang GR, et al. A genetically defined compartmentalized striatal direct pathway for negative reinforcement. Cell 2020, 183: 211-227.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicolas C, Ju A, Wu Y, Eldirdiri H, Delcasso S, Couderc Y, et al. Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nat Commun 2023, 14: 5073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Gillis-Smith S, Peng Y, Zhang J, Chen X, Salzman CD, et al. The coding of valence and identity in the mammalian taste system. Nature 2018, 558: 127–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Floresco SB. The nucleus accumbens: An interface between cognition, emotion, and action. Annu Rev Psychol 2015, 66: 25–52.

    Article  PubMed  Google Scholar 

  28. Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, et al. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021, 24: 1757–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martiros N, Kapoor V, Kim SE, Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum’s olfactory tubercle. eLife 2022, 11: e75463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, et al. Genetically identified amygdala-striatal circuits for valence-specific behaviors. Nat Neurosci 2021, 24: 1586–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fülling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: What happens in vagus…. Neuron 2019, 101: 998–1002.

    Article  PubMed  Google Scholar 

  32. Halassa MM, Sherman SM. Thalamocortical circuit motifs: A general framework. Neuron 2019, 103: 762–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy DS, Zhang Y, Halassa MM, Feng G. Thalamic subnetworks as units of function. Nat Neurosci 2022, 25: 140–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen X, Gabitto M, Peng Y, Ryba NJP, Zuker CS. A gustotopic map of taste qualities in the mammalian brain. Science 2011, 333: 1262–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mazzola L, Royet JP, Catenoix H, Montavont A, Isnard J, Mauguière F. Gustatory and olfactory responses to stimulation of the human insula. Ann Neurol 2017, 82: 360–370.

    Article  CAS  PubMed  Google Scholar 

  36. Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK. Distinct representations of basic taste qualities in human gustatory cortex. Nat Commun 2019, 10: 1048.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jao Keehn RJ, Pueschel EB, Gao Y, Jahedi A, Alemu K, Carper R, et al. Underconnectivity between visual and salience networks and links with sensory abnormalities in autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2021, 60: 274–285.

    Article  PubMed  Google Scholar 

  38. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci 2014, 15: 170–180.

    Article  CAS  PubMed  Google Scholar 

  39. Avery JA, Liu AG, Ingeholm JE, Riddell CD, Gotts SJ, Martin A. Taste quality representation in the human brain. J Neurosci 2020, 40: 1042–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fontanini A. Taste. Curr Biol 2023, 33: R130–R135.

    Article  CAS  PubMed  Google Scholar 

  41. Chen K, Kogan JF, Fontanini A. Spatially distributed representation of taste quality in the gustatory insular cortex of behaving mice. Curr Biol 2021, 31: 247-256.e4.

    Article  PubMed  Google Scholar 

  42. Peng Y, Gillis-Smith S, Jin H, Tränkner D, Ryba NJP, Zuker CS. Sweet and bitter taste in the brain of awake behaving animals. Nature 2015, 527: 512–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan HE, Sisti AC, Jin H, Vignovich M, Villavicencio M, Tsang KS, et al. The gut-brain axis mediates sugar preference. Nature 2020, 580: 511–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu C, Yang T, Zhao H, Zhang M, Meng F, Fu H, et al. Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci Bull 2016, 32: 191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. Top-down and bottom-up modulation of pain-induced oscillations. Front Hum Neurosci 2015, 9: 375.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: A single-trial fMRI study. Pain 2007, 128: 20–30.

    Article  CAS  PubMed  Google Scholar 

  47. Mazzola L, Isnard J, Peyron R, Guénot M, Mauguière F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009, 146: 99–104.

    Article  CAS  PubMed  Google Scholar 

  48. Hoskin R, Talmi D. Adaptive coding of pain prediction error in the anterior insula. Eur J Pain 2023, 27: 766–778.

    Article  PubMed  Google Scholar 

  49. Zhang MM, Geng AQ, Chen K, Wang J, Wang P, Qiu XT, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 2022, 110: 1993-2008.e6.

    Article  CAS  PubMed  Google Scholar 

  50. Gehrlach DA, Dolensek N, Klein AS, Roy Chowdhury R, Matthys A, Junghänel M, et al. Aversive state processing in the posterior insular cortex. Nat Neurosci 2019, 22: 1424–1437.

    Article  CAS  PubMed  Google Scholar 

  51. Forkmann K, Wiech K, Schmidt K, Schmid-Köhler J, Bingel U. Neural underpinnings of preferential pain learning and the modulatory role of fear. Cereb Cortex 2023, 33: 9664–9676.

    Article  PubMed  Google Scholar 

  52. Yawata Y, Shikano Y, Ogasawara J, Makino K, Kashima T, Ihara K, et al. Mesolimbic dopamine release precedes actively sought aversive stimuli in mice. Nat Commun 2023, 14: 2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chouchou F, Mauguière F, Vallayer O, Catenoix H, Isnard J, Montavont A, et al. How the insula speaks to the heart: Cardiac responses to insular stimulation in humans. Hum Brain Mapp 2019, 40: 2611–2622.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Penfield W, Faulk MEJR. The insula: Further observations on its function. Brain 1955, 78: 445–470.

    Article  CAS  PubMed  Google Scholar 

  55. Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci 2021, 44: 3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI, Sugden LA, et al. Estimation of current and future physiological states in insular cortex. Neuron 2020, 105: 1094-1111.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsueh B, Chen R, Jo Y, Tang D, Raffiee M, Kim YS, et al. Cardiogenic control of affective behavioural state. Nature 2023, 615: 292–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prilutski Y, Livneh Y. Physiological needs: Sensations and predictions in the insular cortex. Physiology 2023, 38: 0.

  59. Livneh Y, Ramesh RN, Burgess CR, Levandowski KM, Madara JC, Fenselau H, et al. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 2017, 546: 611–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nunn K, Frampton I, Fuglset TS, Törzsök-Sonnevend M, Lask B. Anorexia nervosa and the insula. Med Hypotheses 2011, 76: 353–357.

    Article  PubMed  Google Scholar 

  61. Nunn K, Frampton I, Gordon I, Lask B. The fault is not in her parents but in her insula—a neurobiological hypothesis of anorexia nervosa. Eur Eat Disord Rev 2008, 16: 355–360.

    Article  PubMed  Google Scholar 

  62. Dolensek N, Gehrlach DA, Klein AS, Gogolla N. Facial expressions of emotion states and their neuronal correlates in mice. Science 2020, 368: 89–94.

    Article  CAS  PubMed  Google Scholar 

  63. Pang J, Tang X, Li H, Hu Q, Cui H, Zhang L, et al. Altered interoceptive processing in generalized anxiety disorder-a heartbeat-evoked potential research. Front Psychiatry 2019, 10: 616.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paulus MP, Stein MB. An insular view of anxiety. Biol Psychiatry 2006, 60: 383–387.

    Article  PubMed  Google Scholar 

  65. Namkung H, Lockhart S, de Chabot J, Guttman L, Isehak I, Kwon HB, et al. The anterior insular cortex associates temporally discontiguous stimuli during threat learning. bioRxiv 2021, DOI: https://doi.org/10.1101/2021.10.19.465048.

  66. Klein AS, Dolensek N, Weiand C, Gogolla N. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 2021, 374: 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  67. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron 2015, 86: 646–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blair RJR. The neurobiology of impulsive aggression. J Child Adolesc Psychopharmacol 2016, 26: 4–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Suvilehto JT, Renvall V, Nummenmaa L. Relationship-specific encoding of social touch in somatosensory and insular cortices. Neuroscience 2021, 464: 105–116.

    Article  CAS  PubMed  Google Scholar 

  70. Harshaw C. Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol Bull 2015, 141: 311–363.

    Article  PubMed  Google Scholar 

  71. Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: A critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci 2014, 1316: 53–70.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007, 315: 531–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Manes F, Paradiso S, Robinson RG. Neuropsychiatric effects of insular stroke. J Nerv Ment Dis 1999, 187: 707–712.

    Article  CAS  PubMed  Google Scholar 

  74. Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci 2015, 19: 414–420.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Craig AD. The sentient self. Brain Struct Funct 2010, 214: 563–577.

    Article  PubMed  Google Scholar 

  76. Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci 2011, 1225: 72–82.

    Article  PubMed  Google Scholar 

  77. Blomqvist A, Evrard HC, Dostrovsky JO, Strigo IA, Jänig W. A. D. (bud) craig, jr. (1951–2023). Nat Neurosci 2023, 26: 1835–1836.

  78. Craig AD. Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 2009, 364: 1933–1942.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vicario CM, Kuran KA, Urgesi C. Does hunger sharpen senses? A psychophysics investigation on the effects of appetite in the timing of reinforcement-oriented actions. Psychol Res 2019, 83: 395–405.

    Article  PubMed  Google Scholar 

  80. Kosillo P, Smith AT. The role of the human anterior insular cortex in time processing. Brain Struct Funct 2010, 214: 623–628.

    Article  CAS  PubMed  Google Scholar 

  81. Wiener M, Turkeltaub P, Coslett HB. The image of time: A voxel-wise meta-analysis. NeuroImage 2010, 49: 1728–1740.

    Article  PubMed  Google Scholar 

  82. Wittmann M, Simmons AN, Aron JL, Paulus MP. Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia 2010, 48: 3110–3120.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mondok C, Wiener M. Selectivity of timing: A meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Front Hum Neurosci 2022, 16: 1000995.

    Article  PubMed  Google Scholar 

  84. Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, et al. Embodying time in the brain: A multi-dimensional neuroimaging meta-analysis of 95 duration processing studies. Neuropsychol Rev 2024, 34: 277–298.

    Article  PubMed  Google Scholar 

  85. Damasio AR. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 1996, 351: 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  86. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci 2000, 3: 1049–1056.

    Article  CAS  PubMed  Google Scholar 

  87. Loued-Khenissi L, Pfeuffer A, Einhäuser W, Preuschoff K. Anterior insula reflects surprise in value-based decision-making and perception. NeuroImage 2020, 210: 116549.

    Article  PubMed  Google Scholar 

  88. Paulus MP, Feinstein JS, Leland D, Simmons AN. Superior temporal gyrus and insula provide response and outcome-dependent information during assessment and action selection in a decision-making situation. NeuroImage 2005, 25: 607–615.

    Article  PubMed  Google Scholar 

  89. Schiff HC, Bouhuis AL, Yu K, Penzo MA, Li H, He M, et al. An Insula-central amygdala circuit for guiding tastant-reinforced choice behavior. J Neurosci 2018, 38: 1418–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vincis R, Chen K, Czarnecki L, Chen J, Fontanini A. Dynamic representation of taste-related decisions in the gustatory insular cortex of mice. Curr Biol 2020, 30: 1834-1844.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Korucuoglu O, Harms MP, Kennedy JT, Golosheykin S, Astafiev SV, Barch DM, et al. Adolescent decision-making under risk: Neural correlates and sex differences. Cereb Cortex 2020, 30: 2690–2706.

    Article  PubMed  Google Scholar 

  92. Stallen M, Borg N, Knutson B. Brain activity foreshadows stock price dynamics. J Neurosci 2021, 41: 3266–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD. The neural basis of economic decision-making in the Ultimatum Game. Science 2003, 300: 1755–1758.

    Article  CAS  PubMed  Google Scholar 

  94. Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, et al. The functional and structural neural basis of individual differences in loss aversion. J Neurosci 2013, 33: 14307–14317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 2008, 131: 1311–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weller JA, Levin IP, Shiv B, Bechara A. The effects of insula damage on decision-making for risky gains and losses. Soc Neurosci 2009, 4: 347–358.

    Article  PubMed  Google Scholar 

  97. Lamm C, Singer T. The role of anterior insular cortex in social emotions. Brain Struct Funct 2010, 214: 579–591.

    Article  PubMed  Google Scholar 

  98. Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019, 103: 119–132.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Singer T, Steinbeis N. Differential roles of fairness- and compassion-based motivations for cooperation, defection, and punishment. Ann N Y Acad Sci 2009, 1167: 41–50.

    Article  PubMed  Google Scholar 

  100. Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol 2011, 62: 23–48.

    Article  PubMed  Google Scholar 

  101. Belfi AM, Koscik TR, Tranel D. Damage to the insula is associated with abnormal interpersonal trust. Neuropsychologia 2015, 71: 165–172.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xiaofei Wang and Xu Chen (the Big Data Platform of Brain Atlas at the CEBSIT) for analyzing single-neuron insular projection data. This work was supported by grants from the National Natural Science Foundation of China (32371060 and 32271065), the Lingang Laboratory (LG-QS-202203-06 and LG-QS-202203-02), the Chinese Academy of Sciences, and Benyuan Charity Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Xiao.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Deng, H. & Xiao, X. The Insular Cortex: An Interface Between Sensation, Emotion and Cognition. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-024-01211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-024-01211-4

Keywords

Navigation