Skip to main content

Advertisement

Log in

Stem Cell Treatment for Knee Articular Cartilage Defects and Osteoarthritis

  • Stem Cells in Orthopaedic Surgery (J Dragoo and KJ Jones, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the current basic science and clinical literature on mesenchymal stem cell (MSC) therapy for articular cartilage defects and osteoarthritis of the knee.

Recent Findings

MSCs derived from bone marrow, adipose, and umbilical tissue have the capacity for self-renewal and differentiation into the chondrocyte lineage. In theory, MSC therapy may help restore cartilage focally or diffusely where nascent regenerative potential in the intra-articular environment is limited. Over the last several years, in vitro and animal studies have elucidated the use of MSCs in isolation as injectables, in combination with biological delivery media and scaffolding, and as surgical adjuvants for cartilage regeneration and treatment of knee degenerative conditions. More recently, clinical and translational literature has grown more convincing from early descriptive case series to randomized controlled trials showing promise in efficacy and safety. Studies describing MSC for knee cartilage regeneration applications are numerous and varied in quality. Future research directions should include work on elucidating optimal cell concentration and dosing, as well as standardization in methodology and reporting in prospective trials.

Summary

Backed by promise from in vitro and animal studies, preliminary clinical evidence on MSC therapy shows promise as a nonoperative therapeutic option or an adjuvant to existing surgical cartilage restoration techniques. While higher quality evidence to support MSC therapy has emerged over the last several years, further refinement of methodology will be necessary to support its routine clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis. 2014;73(9):1659–64.

    PubMed  Google Scholar 

  2. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis. 2014;73(7):1323–30.

    PubMed  Google Scholar 

  3. Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013;21(9):571–6.

    PubMed  Google Scholar 

  4. Bedard NA, DeMik DE, Glass NA, Burnett RA, Bozic KJ, Callaghan JJ. Impact of clinical practice guidelines on use of intra-articular hyaluronic acid and corticosteroid injections for knee osteoarthritis. J Bone Jt Surg. 2018;100(10):827–34.

    Google Scholar 

  5. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res. 1996;11(5):568–77.

    CAS  PubMed  Google Scholar 

  6. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004;86-A(3):455–64.

    Google Scholar 

  7. Samsudin EZ, Kamarul T. The comparison between the different generations of autologous chondrocyte implantation with other treatment modalities: a systematic review of clinical trials. Knee Surgery, Sport Traumatol Arthrosc. 2016;24(12):3912–26.

    Google Scholar 

  8. Ebert JR, Edwards PK, Fallon M, Ackland TR, Janes GC, Wood DJ. Two-year outcomes of a randomized trial investigating a 6-week return to full weightbearing after matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2017;45(4):838–48.

    PubMed  Google Scholar 

  9. Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: implications for cartilage tissue engineering. J Orthop Res. 2017;36(1):52–63.

    PubMed  Google Scholar 

  10. Ghezzi CE, Marelli B, Donelli I, Alessandrino A, Freddi G, Nazhat SN. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages. J Tissue Eng Regen Med. 2017;11(7):2046–59.

    CAS  PubMed  Google Scholar 

  11. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97(1):33–44.

    CAS  PubMed  Google Scholar 

  12. Wang T, Nimkingratana P, Smith CA, Cheng A, Hardingham TE, Kimber SJ. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res. 2019;39:101497.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Caron MMJ, Emans PJ, Cremers A, et al. Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7. Osteoarthr Cartil. 2013;21(4):604–13.

    CAS  Google Scholar 

  14. Heo JS, Choi Y, Kim H, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37(1):115–25.

    PubMed  Google Scholar 

  15. • Pas HI, Winters M, Haisma HJ, Koenis MJ, Tol JL, Moen MH. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med. 2017;51(15):1125–33 Systematic review summarizing recent randomized controlled trials on the use of MSC therapy for knee OA. The authors described six trials with high risk of bias that shows evidence in favor of MSC injections for knee OA.

    PubMed  Google Scholar 

  16. •• Nancarrow-Lei R, Mafi P, Mafi R, Khan W. A systemic review of adult mesenchymal stem cell sources and their multilineage differentiation potential relevant to musculoskeletal tissue repair and regeneration. Curr Stem Cell Res Ther. 2017;12(8):601–10 Comprehensive review of the sources and differentiation potential of MSCs for tissue engineering and regeneration of cartilage and other musculoskeletal tissues.

    CAS  PubMed  Google Scholar 

  17. Varghese J, Griffin M, Mosahebi A, Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther. 2017;8(1):45.

    PubMed  PubMed Central  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    CAS  PubMed  Google Scholar 

  19. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204.

    PubMed  PubMed Central  Google Scholar 

  20. Kuroda K, Kabata T, Hayashi K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord. 2015;16(1):236.

    PubMed  PubMed Central  Google Scholar 

  21. Fong ELS, Chan CK, Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials. 2011;32(2):395–409.

    CAS  PubMed  Google Scholar 

  22. Zahari W, Hashim S, Yusof M, et al. Immunomodulatory effect of cytokines in the differentiation of mesenchymal stem cells: a review. Curr Stem Cell Res Ther. 2017;12(3):197–206.

    CAS  PubMed  Google Scholar 

  23. Ng J, Hynes K, White G, Sivanathan KN, Vandyke K, Bartold PM, et al. Immunomodulatory properties of induced pluripotent stem cell-derived mesenchymal cells. J Cell Biochem. 2016;117(12):2844–53.

    CAS  PubMed  Google Scholar 

  24. Hynes K, Bright R, Proudman S, Haynes D, Gronthos S, Bartold M. Immunomodulatory properties of mesenchymal stem cell in experimental arthritis in rat and mouse models: a systematic review. Semin Arthritis Rheum. 2016;46(1):1–19.

    CAS  PubMed  Google Scholar 

  25. Ozeki N, Muneta T, Koga H, Nakagawa Y, Mizuno M, Tsuji K, et al. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthr Cartil. 2016;24(6):1061–70.

    CAS  Google Scholar 

  26. Desando G, Giavaresi G, Cavallo C, et al. Autologous bone marrow concentrate in a sheep model of osteoarthritis: new perspectives for cartilage and meniscus repair. Tissue Eng Part C Methods. 2016;22(6):608–19.

    CAS  PubMed  Google Scholar 

  27. Chiang E-R, Ma H-L, Wang J-P, Liu C-L, Chen T-H, Hung S-C. Allogeneic mesenchymal stem cells in combination with hyaluronic acid for the treatment of osteoarthritis in rabbits. Li W-J, ed. PLoS One. 2016;11(2):e0149835.

    PubMed  PubMed Central  Google Scholar 

  28. Diekman BO, Wu C-L, Louer CR, Furman BD, Huebner JL, Kraus VB, et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant. 2013;22(8):1395–408.

    PubMed  Google Scholar 

  29. Lv X, He J, Zhang X, Luo X, He N, Sun Z, et al. Comparative efficacy of autologous stromal vascular fraction and autologous adipose-derived mesenchymal stem cells combined with hyaluronic acid for the treatment of sheep osteoarthritis. Cell Transplant. 2018;27(7):1111–25.

    PubMed  PubMed Central  Google Scholar 

  30. Xia T, Yu F, Zhang K, et al. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs. Ann Transl Med. 2018;6(20):404.

    PubMed  PubMed Central  Google Scholar 

  31. Yun S, Ku S-K, Kwon Y-S. Adipose-derived mesenchymal stem cells and platelet-rich plasma synergistically ameliorate the surgical-induced osteoarthritis in beagle dogs. J Orthop Surg Res. 2016;11(1):9.

    PubMed  PubMed Central  Google Scholar 

  32. Feng C, Luo X, He N, Xia H, Lv X, Zhang X, et al. Efficacy and persistence of allogeneic adipose-derived mesenchymal stem cells combined with hyaluronic acid in osteoarthritis after intra-articular injection in a sheep model. Tissue Eng Part A. 2018;24(3–4):219–33.

    CAS  PubMed  Google Scholar 

  33. Zhou J, Wang Y, Liu Y, Zeng H, Xu H, Lian F. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing. J Cell Biochem. 2018;120(2):2198–212.

    Google Scholar 

  34. Saulnier N, Viguier E, Perrier-Groult E, Chenu C, Pillet E, Roger T, et al. Intra-articular administration of xenogeneic neonatal mesenchymal stromal cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthr Cartil. 2015;23(1):122–33.

    CAS  Google Scholar 

  35. Sasaki T, Akagi R, Akatsu Y, Fukawa T, Hoshi H, Yamamoto Y, et al. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res. 2017;6(3):123–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Harada Y, Nakasa T, Mahmoud EE, Kamei G, Adachi N, Deie M, et al. Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit. J Orthop Res. 2015;33(10):1466–73.

    CAS  PubMed  Google Scholar 

  37. • Mahmoud EE, Adachi N, Mawas AS, Deie M, Ochi M. Multiple intra-articular injections of allogeneic bone marrow-derived stem cells potentially improve knee lesions resulting from surgically induced osteoarthritis: an animal study. Bone Joint J. 2019;101-B(7):824–31 Small animal osteoarthritis model that demonstrates superiority of multiple allogeneic marrow-derived MSC injections compared with single injection both histologically and morphologically.

    CAS  PubMed  Google Scholar 

  38. Hermeto LC, DeRossi R, Oliveira RJ, et al. Effects of intra-articular injection of mesenchymal stem cells associated with platelet-rich plasma in a rabbit model of osteoarthritis. Genet Mol Res. 2016;15(3).

  39. • Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017;105(8):2343–54 Comprehensive review that describes recent challenges and developments in scaffolding adjuvants for MSC delivery for cartilage repair from a tissue engineering perspective.

    CAS  PubMed  Google Scholar 

  40. Lin X, Wang W, Zhang W, Zhang Z, Zhou G, Cao Y, et al. Hyaluronic acid coating enhances biocompatibility of nonwoven PGA scaffold and cartilage formation. Tissue Eng Part C Methods. 2017;23(2):86–97.

    CAS  PubMed  Google Scholar 

  41. Muhonen V, Salonius E, Haaparanta A-M, Järvinen E, Paatela T, Meller A, et al. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study. J Orthop Res. 2016;34(5):745–53.

    CAS  PubMed  Google Scholar 

  42. Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1424–33.

    PubMed  Google Scholar 

  43. Liu Y, Tian K, Hao J, Yang T, Geng X, Zhang W. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2019;30(5):53.

    PubMed  Google Scholar 

  44. Christensen BB, Foldager CB, Hansen OM, et al. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1192–204.

    PubMed  Google Scholar 

  45. Gardner OFW, Musumeci G, Neumann AJ, Eglin D, Archer CW, Alini M, et al. Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. J Tissue Eng Regen Med. 2017;11(10):2912–21.

    CAS  PubMed  Google Scholar 

  46. Pot MW, de Kroon LMG, van der Kraan PM, van Kuppevelt TH, Daamen WF. Unidirectional BMP2-loaded collagen scaffolds induce chondrogenic differentiation. Biomed Mater. 2017;13(1):015007.

    PubMed  Google Scholar 

  47. Recha-Sancho L, Semino CE. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes. J Biomed Mater Res A. 2016;104(7):1694–706.

    CAS  PubMed  Google Scholar 

  48. Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, et al. Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials. 2016;108:157–67.

    CAS  PubMed  Google Scholar 

  49. • Snow M, Williams R, Pagkalos J, Grover L. An in vitro study to determine the feasibility of combining bone marrow concentrate with BST-CarGel as a treatment for cartilage repair. Cartilage. 2018;1947603518812564 In vitro study demonstrating retention of implanted MSCs in chondral defects using a combination of BST-CarGel® and bone marrow aspirate concentrate.

  50. Stanish WD, McCormack R, Forriol F, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Jt Surg Am. 2013;95(18):1640–50.

    Google Scholar 

  51. Xing D, Kwong J, Yang Z, Hou Y, Zhang W, Ma B, et al. Intra-articular injection of mesenchymal stem cells in treating knee osteoarthritis: a systematic review of animal studies. Osteoarthr Cartil. 2018;26(4):445–61.

    CAS  Google Scholar 

  52. Al-Najar M, Khalil H, Al-Ajlouni J, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J Orthop Surg Res. 2017;12(1):190.

    PubMed  PubMed Central  Google Scholar 

  53. Garay-Mendoza D, Villarreal-Martínez L, Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cavazos F, et al. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int J Rheum Dis. 2018;21(1):140–7.

    CAS  PubMed  Google Scholar 

  54. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Nuñez-Córdoba JM, Sánchez-Echenique C, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2016;14(1):246.

    PubMed  PubMed Central  Google Scholar 

  55. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    CAS  PubMed  Google Scholar 

  56. Jo CH, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am J Sports Med. 2017;45(12):2774–83.

    PubMed  Google Scholar 

  57. Song Y, Du H, Dai C, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections. Regen Med. 2018;13(3):295–307.

    CAS  PubMed  Google Scholar 

  58. Pers Y-M, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5(7):847–56.

    PubMed  PubMed Central  Google Scholar 

  59. • Gupta PK, Chullikana A, Rengasamy M, et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint. Arthritis Res Ther. 2016;18(1):301 Preclinical and clinical trial describing the use of Stempeucel® marrow-derived, allogeneic MSC injection for knee OA.

    PubMed  PubMed Central  Google Scholar 

  60. Vega A, Martín-Ferrero MA, Del Canto F, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.

    CAS  PubMed  Google Scholar 

  61. Park Y-B, Ha C-W, Lee C-H, Yoon YC, Park Y-G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 2017;6(2):613–21.

    CAS  PubMed  Google Scholar 

  62. •• Matas J, Orrego M, Amenabar D, et al. Umbilical cord-derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem Cells Transl Med. 2019;8(3):215–24 Randomized controlled clinical trial that demonstrates superiority in clinical outcomes of repeated MSC dosing compared with single MSC dosing.

    CAS  PubMed  Google Scholar 

  63. Betsch M, Schneppendahl J, Thuns S, et al. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. Neves NM, ed. PLoS One. 2013;8(8):e71602.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J, Tak D-H. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthrosc J Arthrosc Relat Surg. 2016;32(1):97–109

    Google Scholar 

  65. Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy. 2014;30(11):1453–60.

    PubMed  Google Scholar 

  66. Koh Y-G, Jo S-B, Kwon O-R, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthrosc J Arthrosc Relat Surg. 2013;29(4):748–55.

    Google Scholar 

  67. Koh Y-G, Choi Y-J. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19(6):902–7.

    PubMed  Google Scholar 

  68. Bansal H, Comella K, Leon J, et al. Intra-articular injection in the knee of adipose derived stromal cells (stromal vascular fraction) and platelet rich plasma for osteoarthritis. J Transl Med. 2017;15(1):141.

    PubMed  PubMed Central  Google Scholar 

  69. Gibbs N, Diamond R, Sekyere EO, Thomas WD. Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet-rich plasma, and musculoskeletal exercises: a case series. J Pain Res. 2015;8:799–806.

    PubMed  PubMed Central  Google Scholar 

  70. Wong KL, Lee KBL, Tai BC, Law P, Lee EH, Hui JHP. Injectable cultured bone marrow–derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthrosc J Arthrosc Relat Surg. 2013;29(12):2020–8.

    Google Scholar 

  71. Freitag J, Ford J, Bates D, Boyd R, Hahne A, Wang Y, et al. Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal. BMJ Open. 2015;5(12):e009332.

    PubMed  PubMed Central  Google Scholar 

  72. •• Peeters CMM, Leijs MJC, Reijman M, van Osch GJVM, Bos PK. Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthr Cartil. 2013;21(10):1465–73 Systematic literature review reviews side effects and complications associated with injectable intra-articular MSC therapies.

    CAS  Google Scholar 

  73. Yubo M, Yanyan L, Li L, Tao S, Bo L, Lin C. Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: a meta-analysis. Hills RK, ed. PLoS One. 2017;12(4):e0175449.

    PubMed  PubMed Central  Google Scholar 

  74. •• Piuzzi NS, Ng M, Chughtai M, et al. The stem-cell market for the treatment of knee osteoarthritis: a patient perspective. J Knee Surg. 2018;31(6):551–6 Cross-sectional study that assesses the cost and purported clinical efficacy of centers offering MSC therapy in the USA, which may help identify discrepancies between marketing and evidence-based practice.

    PubMed  Google Scholar 

  75. Sipp D, Caulfield T, Kaye J, et al. Marketing of unproven stem cell-based interventions: a call to action. Sci Transl Med. 2017;9(397):eaag0426.

    PubMed  Google Scholar 

  76. • Chu CR, Rodeo S, Bhutani N, et al. Optimizing clinical use of biologics in orthopaedic surgery. J Am Acad Orthop Surg. 2019;27(2):e50–63 Consensus statement from the AAOS and NIH on recommendations for minimal standards of product characterization and clinical research on biologics in orthopedic surgery.

    PubMed  Google Scholar 

  77. Hatsushika D, Muneta T, Nakamura T, Horie M, Koga H, Nakagawa Y, et al. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthr Cartil. 2014;22(7):941–50.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristofer J. Jones.

Ethics declarations

Conflict of Interest

Dr. Arshi has no conflicts of interest to declare.

Dr. Petrigliano declares the following potential conflicts of interest: paid consultant for Biomet and Stryker.

Dr. Williams declares the following potential conflicts of interest: paid consultant for Arthrex, JRF Ortho, and Lipogems; stock or stock options from Cymedica, Gramercy Extremity Orthopedics, Pristine Surgical, and RecoverX; research support from Histogenics.

Dr. Jones declares the following potential conflicts of interest: paid consult for Vericel, JRF Ortho, Arthrex, and CONMED Linvaetec; research support from Aesculap/B.Braun, Musculoskeletal Transplant Foundation, and Zimmer.

Human and Animal Rights and Informed Consent

This article does not contatin any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stem Cells in Orthopaedic Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshi, A., Petrigliano, F.A., Williams, R.J. et al. Stem Cell Treatment for Knee Articular Cartilage Defects and Osteoarthritis. Curr Rev Musculoskelet Med 13, 20–27 (2020). https://doi.org/10.1007/s12178-020-09598-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-020-09598-z

Keywords

Navigation