Skip to main content

Advertisement

Log in

Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep–wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. COVID-19 deaths | WHO COVID-19 dashboard. Datadot n.d. https://data.who.int/dashboards/covid19/cases (accessed February 1, 2024).

  2. Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, Wakefield J (2023) The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature 613:130–137. https://doi.org/10.1038/s41586-022-05522-2

    Article  CAS  PubMed  Google Scholar 

  3. Cucinotta D, Vanelli M (2020) WHO declares COVID-19 a pandemic. Acta Biomed 91:157–60. https://doi.org/10.23750/abm.v91i1.9397

    Article  PubMed  PubMed Central  Google Scholar 

  4. Güner R, Hasanoğlu I, Aktaş F (2020) COVID-19: prevention and control measures in community. Turk J Med Sci 50:571–577. https://doi.org/10.3906/sag-2004-146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rando HM, MacLean AL, Lee AJ, Lordan R, Ray S, Bansal V et al (2021) Pathogenesis, symptomatology, and transmission of SARS-CoV-2 through analysis of viral genomics and structure. mSystems 6:e0009521. https://doi.org/10.1128/mSystems.00095-21

    Article  PubMed  Google Scholar 

  6. Rajarshi K, Khan R, Singh MK, Ranjan T, Ray S, Ray S (2021) Essential functional molecules associated with SARS-CoV-2 infection: potential therapeutic targets for COVID-19. Gene 768:145313. https://doi.org/10.1016/j.gene.2020.145313

    Article  CAS  PubMed  Google Scholar 

  7. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269. https://doi.org/10.1038/s41586-020-2008-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou X, Chen K, Zou J, Han P, Hao J, Han Z (2020) Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 14:185–192. https://doi.org/10.1007/s11684-020-0754-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang Y, Yang C, Xu X, Xu W, Liu S (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41:1141–1149. https://doi.org/10.1038/s41401-020-0485-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee S-S (2021) The drug repurposing for COVID-19 clinical trials provide very effective therapeutic combinations: lessons learned from major clinical studies. Front Pharmacol 12:704205. https://doi.org/10.3389/fphar.2021.704205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharif N, Alzahrani KJ, Ahmed SN, Dey SK (2021) Efficacy, Immunogenicity and safety of COVID-19 vaccines: a systematic review and meta-analysis. Front Immunol 12:714170. https://doi.org/10.3389/fimmu.2021.714170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Del Rio C, Collins LF, Malani P (2020) Long-term health consequences of COVID-19. JAMA 324:1723–1724. https://doi.org/10.1001/jama.2020.19719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Higgins V, Sohaei D, Diamandis EP, Prassas I (2021) COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci 58:297–310. https://doi.org/10.1080/10408363.2020.1860895

    Article  CAS  PubMed  Google Scholar 

  15. Montani D, Savale L, Noel N, Meyrignac O, Colle R, Gasnier M et al (2022) Post-acute COVID-19 syndrome. Eur Respir Rev 31:210185. https://doi.org/10.1183/16000617.0185-2021

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ (2021) 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8:416–427. https://doi.org/10.1016/S2215-0366(21)00084-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Taquet M, Sillett R, Zhu L, Mendel J, Camplisson I, Dercon Q et al (2022) Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9:815–827. https://doi.org/10.1016/S2215-0366(22)00260-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P et al (2020) Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7:611–627. https://doi.org/10.1016/S2215-0366(20)30203-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ray S, Reddy AB (2020) COVID-19 management in light of the circadian clock. Nat Rev Mol Cell Biol 21:494–495. https://doi.org/10.1038/s41580-020-0275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alimoradi Z, Broström A, Tsang HWH, Griffiths MD, Haghayegh S, Ohayon MM et al (2021) Sleep problems during COVID-19 pandemic and its’ association to psychological distress: a systematic review and meta-analysis. EClinicalMedicine 36:100916. https://doi.org/10.1016/j.eclinm.2021.100916

    Article  PubMed  PubMed Central  Google Scholar 

  21. Puccinelli PJ, da Costa TS, Seffrin A, de Lira CAB, Vancini RL, Nikolaidis PT et al (2021) Reduced level of physical activity during COVID-19 pandemic is associated with depression and anxiety levels: an internet-based survey. BMC Public Health 21:425. https://doi.org/10.1186/s12889-021-10470-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. González-Monroy C, Gómez-Gómez I, Olarte-Sánchez CM, Motrico E (2021) Eating behaviour changes during the COVID-19 pandemic: a systematic review of longitudinal studies. Int J Environ Res Public Health 18:11130. https://doi.org/10.3390/ijerph182111130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ray S, Reddy AB (2016) Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: dispelling the darkness. BioEssays 38:394–405. https://doi.org/10.1002/bies.201500056

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jha PK, Valekunja UK, Ray S, Nollet M, Reddy AB (2022) Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep. Commun Biol 5:846. https://doi.org/10.1038/s42003-022-03800-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Banerjee S, Ray S (2023) Circadian medicine for aging attenuation and sleep disorders: prospects and challenges. Prog Neurobiol 220:102387. https://doi.org/10.1016/j.pneurobio.2022.102387

    Article  CAS  PubMed  Google Scholar 

  26. Lane JM, Qian J, Mignot E, Redline S, Scheer FAJL, Saxena R (2023) Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet 24:4–20. https://doi.org/10.1038/s41576-022-00519-z

    Article  CAS  PubMed  Google Scholar 

  27. Musiek ES, Holtzman DM (2016) Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science 354:1004–1008. https://doi.org/10.1126/science.aah4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ch R, Rey G, Ray S, Jha PK, Driscoll PC, Dos Santos MS et al (2021) Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nat Commun 12:377. https://doi.org/10.1038/s41467-020-20479-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhatnagar A, Murray G, Ray S (2023) Circadian biology to advance therapeutics for mood disorders. Trends Pharmacol Sci 44:689–704. https://doi.org/10.1016/j.tips.2023.07.008

    Article  CAS  PubMed  Google Scholar 

  30. Horton CL (2017) Consciousness across sleep and wake: discontinuity and continuity of memory experiences as a reflection of consolidation processes. Front Psychiatry 8:159. https://doi.org/10.3389/fpsyt.2017.00159

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scammell TE, Arrigoni E, Lipton JO (2017) Neural circuitry of wakefulness and sleep. Neuron 93:747–765. https://doi.org/10.1016/j.neuron.2017.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krueger JM, Frank MG, Wisor JP, Roy S (2016) Sleep function: Toward elucidating an enigma. Sleep Med Rev 28:46–54. https://doi.org/10.1016/j.smrv.2015.08.005

    Article  PubMed  Google Scholar 

  33. Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E (2021) Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol 4:1304. https://doi.org/10.1038/s42003-021-02825-4

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roenneberg T, Merrow M (2016) The circadian clock and human health. Curr Biol 26:R432-443. https://doi.org/10.1016/j.cub.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  35. Healy KL, Morris AR, Liu AC (2021) Circadian synchrony: sleep, nutrition, and physical activity. Front Netw Physiol 1:732243. https://doi.org/10.3389/fnetp.2021.732243

    Article  PubMed  PubMed Central  Google Scholar 

  36. Salehinejad MA, Azarkolah A, Ghanavati E, Nitsche MA (2022) Circadian disturbances, sleep difficulties and the COVID-19 pandemic. Sleep Med 91:246–252. https://doi.org/10.1016/j.sleep.2021.07.011

    Article  PubMed  Google Scholar 

  37. Stewart NH, Koza A, Dhaon S, Shoushtari C, Martinez M, Arora VM (2021) Sleep disturbances in frontline health care workers during the COVID-19 pandemic: social media survey study. J Med Internet Res 23:e27331. https://doi.org/10.2196/27331

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bhat S, Chokroverty S (2022) Sleep disorders and COVID-19. Sleep Med 91:253–261. https://doi.org/10.1016/j.sleep.2021.07.021

    Article  PubMed  Google Scholar 

  39. Pataka A, Kotoulas S, Sakka E, Katsaounou P, Pappa S (2021) Sleep dysfunction in COVID-19 patients: prevalence, risk factors, mechanisms, and management. J Pers Med 11:1203. https://doi.org/10.3390/jpm11111203

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179. https://doi.org/10.1038/nrg.2016.150

    Article  CAS  PubMed  Google Scholar 

  41. Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21:67–84. https://doi.org/10.1038/s41580-019-0179-2

    Article  CAS  PubMed  Google Scholar 

  42. Hergenhan S, Holtkamp S, Scheiermann C (2020) Molecular interactions between components of the circadian clock and the immune system. J Mol Biol 432:3700–3713. https://doi.org/10.1016/j.jmb.2019.12.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rankawat S, Kundal K, Chakraborty S, Kumar R, Ray S (2023) A comprehensive rhythmicity analysis of host proteins and immune factors involved in malaria pathogenesis to decipher the importance of host circadian clock in malaria. Front Immunol 14:1210299. https://doi.org/10.3389/fimmu.2023.1210299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Borrmann H, McKeating JA, Zhuang X (2021) The circadian clock and viral infections. J Biol Rhythms 36:9–22. https://doi.org/10.1177/0748730420967768

    Article  CAS  PubMed  Google Scholar 

  45. Zhuang X, Forde D, Tsukuda S, D’Arienzo V, Mailly L, Harris JM et al (2021) Circadian control of hepatitis B virus replication. Nat Commun 12:1658. https://doi.org/10.1038/s41467-021-21821-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang S-L, Yu C, Jiang J-X, Liu L-P, Fang X, Wu C (2014) Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma. Oncol Lett 8:2715–2720. https://doi.org/10.3892/ol.2014.2570

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vinciguerra M, Mazzoccoli G, Piccoli C, Tataranni T, Andriulli A, Pazienza V (2013) Exploitation of host clock gene machinery by hepatitis viruses B and C. World J Gastroenterol 19:8902–8909. https://doi.org/10.3748/wjg.v19.i47.8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benegiamo G, Mazzoccoli G, Cappello F, Rappa F, Scibetta N, Oben J et al (2013) Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS ONE 8:e60527. https://doi.org/10.1371/journal.pone.0060527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Horii R, Honda M, Shirasaki T, Shimakami T, Shimizu R, Yamanaka S et al (2019) MicroRNA-10a impairs liver metabolism in hepatitis C virus-related cirrhosis through deregulation of the circadian clock gene brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1. Hepatol Commun 3:1687–1703. https://doi.org/10.1002/hep4.1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhuang X, Magri A, Hill M, Lai AG, Kumar A, Rambhatla SB et al (2019) The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nat Commun 10:377. https://doi.org/10.1038/s41467-019-08299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Borrmann H, Davies R, Dickinson M, Pedroza-Pacheco I, Schilling M, Vaughan-Jackson A et al (2020) Pharmacological activation of the circadian component REV-ERB inhibits HIV-1 replication. Sci Rep 10:13271. https://doi.org/10.1038/s41598-020-70170-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clark JP, Sampair CS, Kofuji P, Nath A, Ding JM (2005) HIV protein, transactivator of transcription, alters circadian rhythms through the light entrainment pathway. Am J Physiol Regul Integr Comp Physiol 289:R656-662. https://doi.org/10.1152/ajpregu.00179.2005

    Article  CAS  PubMed  Google Scholar 

  53. Matsuzawa T, Nakamura Y, Ogawa Y, Ishimaru K, Goshima F, Shimada S et al (2018) Differential day-night outcome to HSV-2 cutaneous infection. J Invest Dermatol 138:233–236. https://doi.org/10.1016/j.jid.2017.07.838

    Article  CAS  PubMed  Google Scholar 

  54. Kalamvoki M, Roizman B (2010) Circadian CLOCK histone acetyl transferase localizes at ND10 nuclear bodies and enables herpes simplex virus gene expression. Proc Natl Acad Sci U S A 107:17721–17726. https://doi.org/10.1073/pnas.1012991107

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sundar IK, Ahmad T, Yao H, Hwang J, Gerloff J, Lawrence BP et al (2015) Influenza A virus-dependent remodeling of pulmonary clock function in a mouse model of COPD. Sci Rep 4:9927. https://doi.org/10.1038/srep09927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhuang X, Tsukuda S, Wrensch F, Wing PAC, Schilling M, Harris JM et al (2021) The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. iScience 24:103144. https://doi.org/10.1016/j.isci.2021.103144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Edgar RS, Stangherlin A, Nagy AD, Nicoll MP, Efstathiou S, O’Neill JS et al (2016) Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proc Natl Acad Sci U S A 113:10085–10090. https://doi.org/10.1073/pnas.1601895113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhuang X, Lai AG, McKeating JA, Rowe I, Balfe P (2018) Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Res 3:96. https://doi.org/10.12688/wellcomeopenres.14696.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sengupta S, Tang SY, Devine JC, Anderson ST, Nayak S, Zhang SL et al (2019) Circadian control of lung inflammation in influenza infection. Nat Commun 10:4107. https://doi.org/10.1038/s41467-019-11400-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Papagerakis S, Said R, Ketabat F, Mahmood R, Pundir M, Lobanova L et al (2022) When the clock ticks wrong with COVID-19. Clin Transl Med 12:e949. https://doi.org/10.1002/ctm2.949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C et al (2020) Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182:59-72.e15. https://doi.org/10.1016/j.cell.2020.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S et al (2020) Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583:469–472. https://doi.org/10.1038/s41586-020-2332-7

    Article  CAS  PubMed  Google Scholar 

  63. Boaventura B, Antunes LC, Stanford FC (2021) “New normal” routine: the impact of COVID-19 pandemic on chronodisrupture and its consequence on obesity. Chronobiol Int 38:1083–1086. https://doi.org/10.1080/07420528.2021.1909612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salfi F, Amicucci G, Corigliano D, D’Atri A, Viselli L, Tempesta D et al (2021) Changes of evening exposure to electronic devices during the COVID-19 lockdown affect the time course of sleep disturbances. Sleep 44:zsab080. https://doi.org/10.1093/sleep/zsab080

    Article  PubMed  Google Scholar 

  65. Giménez MC, Beersma DGM, Bollen P, van der Linden ML, Gordijn MCM (2014) Effects of a chronic reduction of short-wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation. Chronobiol Int 31:690–697. https://doi.org/10.3109/07420528.2014.893242

    Article  PubMed  Google Scholar 

  66. Yamanaka Y (2020) Basic concepts and unique features of human circadian rhythms: implications for human health. Nutr Rev 78:91–96. https://doi.org/10.1093/nutrit/nuaa072

    Article  PubMed  Google Scholar 

  67. Berlińska A, Świątkowska-Stodulska R, Sworczak K (2021) Old Problem, New concerns: hypercortisolemia in the time of COVID-19. Front Endocrinol (Lausanne) 12:711612. https://doi.org/10.3389/fendo.2021.711612

    Article  PubMed  Google Scholar 

  68. Barrea L, Pugliese G, Framondi L, Di Matteo R, Laudisio D, Savastano S et al (2020) Does Sars-Cov-2 threaten our dreams? Effect of quarantine on sleep quality and body mass index. J Transl Med 18:318. https://doi.org/10.1186/s12967-020-02465-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L et al (2019) The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366:eaav2642. https://doi.org/10.1126/science.aav2642

    Article  CAS  PubMed  Google Scholar 

  70. Toda H, Williams JA, Gulledge M, Sehgal A (2019) A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science 363:509–515. https://doi.org/10.1126/science.aat1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lange T, Dimitrov S, Born J (2010) Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci 1193:48–59. https://doi.org/10.1111/j.1749-6632.2009.05300.x

    Article  CAS  PubMed  Google Scholar 

  72. Besedovsky L, Lange T, Haack M (2019) The sleep-immune crosstalk in health and disease. Physiol Rev 99:1325–1380. https://doi.org/10.1152/physrev.00010.2018

    Article  PubMed  PubMed Central  Google Scholar 

  73. Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463:121–137. https://doi.org/10.1007/s00424-011-1044-0

    Article  CAS  PubMed  Google Scholar 

  74. Esquifino AI, Alvarez MP, Cano P, Chacon F, Reyes Toso CF, Cardinali DP (2004) 24-hour pattern of circulating prolactin and growth hormone levels and submaxillary lymph node immune responses in growing male rats subjected to social isolation. Endocrine 25:41–48. https://doi.org/10.1385/ENDO:25:1:41

    Article  CAS  PubMed  Google Scholar 

  75. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W (2009) Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol 155:231–238. https://doi.org/10.1111/j.1365-2249.2008.03822.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Haus E (2007) Chronobiology in the endocrine system. Adv Drug Deliv Rev 59:985–1014. https://doi.org/10.1016/j.addr.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  77. Straub RH, Cutolo M, Buttgereit F, Pongratz G (2010) Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med 267:543–560. https://doi.org/10.1111/j.1365-2796.2010.02218.x

    Article  CAS  PubMed  Google Scholar 

  78. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. https://doi.org/10.1126/science.1241224

    Article  CAS  PubMed  Google Scholar 

  79. Jahrami HA, Alhaj OA, Humood AM, Alenezi AF, Fekih-Romdhane F, AlRasheed MM et al (2022) Sleep disturbances during the COVID-19 pandemic: a systematic review, meta-analysis, and meta-regression. Sleep Med Rev 62:101591. https://doi.org/10.1016/j.smrv.2022.101591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Partinen M, Holzinger B, Morin CM, Espie C, Chung F, Penzel T et al (2021) Sleep and daytime problems during the COVID-19 pandemic and effects of coronavirus infection, confinement and financial suffering: a multinational survey using a harmonised questionnaire. BMJ Open 11:e050672. https://doi.org/10.1136/bmjopen-2021-050672

    Article  PubMed  Google Scholar 

  81. Redwine L, Hauger RL, Gillin JC, Irwin M (2000) Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J Clin Endocrinol Metab 85:3597–3603. https://doi.org/10.1210/jcem.85.10.6871

    Article  CAS  PubMed  Google Scholar 

  82. Vgontzas AN, Papanicolaou DA, Bixler EO, Lotsikas A, Zachman K, Kales A et al (1999) Circadian interleukin-6 secretion and quantity and depth of sleep. J Clin Endocrinol Metab 84:2603–2607. https://doi.org/10.1210/jcem.84.8.5894

    Article  CAS  PubMed  Google Scholar 

  83. Irwin MR, Opp MR (2017) Sleep health: reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 42:129–155. https://doi.org/10.1038/npp.2016.148

    Article  CAS  PubMed  Google Scholar 

  84. Dimitrov S, Besedovsky L, Born J, Lange T (2015) Differential acute effects of sleep on spontaneous and stimulated production of tumor necrosis factor in men. Brain Behav Immun 47:201–210. https://doi.org/10.1016/j.bbi.2014.11.017

    Article  CAS  PubMed  Google Scholar 

  85. Han S-H, Lee S-Y, Cho JW, Kim JH, Moon H-J, Park HR et al (2023) Sleep and circadian rhythm in relation to COVID-19 and COVID-19 vaccination-national sleep survey of South Korea 2022. J Clin Med 12:1518. https://doi.org/10.3390/jcm12041518

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jahrami H, BaHammam AS, Bragazzi NL, Saif Z, Faris M, Vitiello MV (2021) Sleep problems during the COVID-19 pandemic by population: a systematic review and meta-analysis. J Clin Sleep Med 17:299–313. https://doi.org/10.5664/jcsm.8930

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shafiee A, Jafarabady K, Rajai S, Mohammadi I, Mozhgani S-H (2023) Sleep disturbance increases the risk of severity and acquisition of COVID-19: a systematic review and meta-analysis. Eur J Med Res 28(1):442. https://doi.org/10.1186/s40001-023-01415-w

  88. Silva E de SME, Ono BHVS, Souza JC. Sleep and immunity in times of COVID-19. Rev Assoc Med Bras 2020;66 (Suppl 2):143–7. https://doi.org/10.1590/1806-9282.66.S2.143.

    Article  Google Scholar 

  89. Jiang Z, Zhu P, Wang L, Hu Y, Pang M, Ma S et al (2021) Psychological distress and sleep quality of COVID-19 patients in Wuhan, a lockdown city as the epicenter of COVID-19. J Psychiatr Res 136:595–602. https://doi.org/10.1016/j.jpsychires.2020.10.034

    Article  PubMed  Google Scholar 

  90. Huang B, Niu Y, Zhao W, Bao P, Li D (2020) Reduced sleep in the week prior to diagnosis of COVID-19 is associated with the severity of COVID-19. Nat Sci Sleep 12:999–1007. https://doi.org/10.2147/NSS.S263488

    Article  PubMed  PubMed Central  Google Scholar 

  91. Youngstedt SD, Elliott JA, Kripke DF (2019) Human circadian phase-response curves for exercise. J Physiol 597:2253–2268. https://doi.org/10.1113/JP276943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Martin RA, Viggars MR, Esser KA (2023) Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 19:272–284. https://doi.org/10.1038/s41574-023-00805-8

    Article  PubMed  Google Scholar 

  93. Sato RY, Yamanaka Y (2023) Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness. Am J Physiol Regul Integr Comp Physiol 324:R526–R535. https://doi.org/10.1152/ajpregu.00320.2022

    Article  CAS  PubMed  Google Scholar 

  94. Wolff CA, Esser KA (2019) Exercise timing and circadian rhythms. Curr Opin Physiol 10:64–69. https://doi.org/10.1016/j.cophys.2019.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D et al (2003) Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol 4:R61. https://doi.org/10.1186/gb-2003-4-10-r61

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bruggisser F, Knaier R, Roth R, Wang W, Qian J, Scheer FAJL (2023) Best time of day for strength and endurance training to improve health and performance? A systematic review with meta-analysis. Sports Med Open 9:34. https://doi.org/10.1186/s40798-023-00577-5

    Article  PubMed  PubMed Central  Google Scholar 

  97. Warburton DER, Nicol CW, Bredin SSD (2006) Health benefits of physical activity: the evidence. CMAJ 174:801–809. https://doi.org/10.1503/cmaj.051351

    Article  PubMed  PubMed Central  Google Scholar 

  98. Anderson E, Durstine JL (2019) Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci 1:3–10. https://doi.org/10.1016/j.smhs.2019.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  99. Dunton GF, Do B, Wang SD (2020) Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health 20:1351. https://doi.org/10.1186/s12889-020-09429-3

    Article  CAS  PubMed  Google Scholar 

  100. Hargreaves EA, Lee C, Jenkins M, Calverley JR, Hodge K, Houge MS (2021) Changes in physical activity pre-, during and post-lockdown COVID-19 restrictions in New Zealand and the explanatory role of daily hassles. Front Psychol 12:642954. https://doi.org/10.3389/fpsyg.2021.642954

    Article  PubMed  PubMed Central  Google Scholar 

  101. Akter T, Zeba Z, Hosen I, Al-Mamun F, Mamun MA (2022) Impact of the COVID-19 pandemic on BMI: its changes in relation to socio-demographic and physical activity patterns based on a short period. PLoS ONE 17:e0266024. https://doi.org/10.1371/journal.pone.0266024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vaes AW, Garcia-Aymerich J, Marott JL, Benet M, Groenen MTJ, Schnohr P et al (2014) Changes in physical activity and all-cause mortality in COPD. Eur Respir J 44:1199–1209. https://doi.org/10.1183/09031936.00023214

    Article  PubMed  Google Scholar 

  103. Li P, Li J, Wang Y, Xia J, Liu X (2021) Effects of exercise intervention on peripheral skeletal muscle in stable patients with COPD: a systematic review and meta-analysis. Front Med (Lausanne) 8:766841. https://doi.org/10.3389/fmed.2021.766841

    Article  PubMed  Google Scholar 

  104. Barrett B, Hayney MS, Muller D, Rakel D, Brown R, Zgierska AE et al (2018) Meditation or exercise for preventing acute respiratory infection (MEPARI-2): a randomized controlled trial. PLoS ONE 13:e0197778. https://doi.org/10.1371/journal.pone.0197778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nieman DC, Wentz LM (2019) The compelling link between physical activity and the body’s defense system. J Sport Health Sci 8:201–217. https://doi.org/10.1016/j.jshs.2018.09.009

    Article  PubMed  Google Scholar 

  106. Dixit S (2020) Can moderate intensity aerobic exercise be an effective and valuable therapy in preventing and controlling the pandemic of COVID-19? Med Hypotheses 143:109854. https://doi.org/10.1016/j.mehy.2020.109854

    Article  CAS  PubMed  Google Scholar 

  107. O’Sullivan PB, Caneiro JP, O’Sullivan K, Lin I, Bunzli S, Wernli K et al (2020) Back to basics: 10 facts every person should know about back pain. Br J Sports Med 54:698–699. https://doi.org/10.1136/bjsports-2019-101611

    Article  PubMed  Google Scholar 

  108. Gappmaier E (2012) The submaximal clinical exercise tolerance test (SXTT) to establish safe exercise prescription parameters for patients with chronic disease and disability. Cardiopulm Phys Ther J 23:19–29

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rahmati-Ahmadabad S, Hosseini F (2020) Exercise against SARS-CoV-2 (COVID-19): does workout intensity matter? (A mini review of some indirect evidence related to obesity). Obes Med 19:100245. https://doi.org/10.1016/j.obmed.2020.100245

    Article  PubMed  PubMed Central  Google Scholar 

  110. Arazi H, Falahati A, Suzuki K (2021) Moderate intensity aerobic exercise potential favorable effect against COVID-19: the role of renin-angiotensin system and immunomodulatory effects. Front Physiol 12:747200. https://doi.org/10.3389/fphys.2021.747200

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ramachandran K, Maity S, Muthukumar AR, Kandala S, Tomar D, Abd El-Aziz TM et al (2022) SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics. iScience 25:103722. https://doi.org/10.1016/j.isci.2021.103722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y et al (2022) SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ 29:1395–1408. https://doi.org/10.1038/s41418-022-00928-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ganji R, Reddy PH (2020) Impact of COVID-19 on mitochondrial-based immunity in aging and age-related diseases. Front Aging Neurosci 12:614650. https://doi.org/10.3389/fnagi.2020.614650

    Article  CAS  PubMed  Google Scholar 

  114. Zheng Y, Zhuang M-W, Han L, Zhang J, Nan M-L, Zhan P, Kang D, Liu X, Gao C, Wang P-H (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG- I/MDA-5 signaling. Signal Transduct Target Ther 5(1):299. https://doi.org/10.1038/s41392-020-00438-7

  115. Tian M, Liu W, Li X, Zhao P, Shereen MA, Zhu C et al (2021) HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct Target Ther 6:308. https://doi.org/10.1038/s41392-021-00726-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ajaz S, McPhail MJ, Singh KK, Mujib S, Trovato FM, Napoli S et al (2021) Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. Am J Physiol Cell Physiol 320:C57-65. https://doi.org/10.1152/ajpcell.00426.2020

    Article  CAS  PubMed  Google Scholar 

  117. Jakobsson J, Cotgreave I, Furberg M, Arnberg N, Svensson M (2021) Potential physiological and cellular mechanisms of exercise that decrease the risk of severe complications and mortality following SARS-CoV-2 infection. Sports (Basel) 9:121. https://doi.org/10.3390/sports9090121

    Article  PubMed  Google Scholar 

  118. Benck LR, Cuttica MJ, Colangelo LA, Sidney S, Dransfield MT, Mannino DM et al (2017) Association between cardiorespiratory fitness and lung health from young adulthood to middle age. Am J Respir Crit Care Med 195:1236–1243. https://doi.org/10.1164/rccm.201610-2089OC

    Article  PubMed  PubMed Central  Google Scholar 

  119. Christensen RAG, Arneja J, St Cyr K, Sturrock SL, Brooks JD (2021) The association of estimated cardiorespiratory fitness with COVID-19 incidence and mortality: a cohort study. PLoS ONE 16:e0250508. https://doi.org/10.1371/journal.pone.0250508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zbinden-Foncea H, Francaux M, Deldicque L, Hawley JA (2020) Does High Cardiorespiratory fitness confer some protection against proinflammatory responses after infection by SARS-CoV-2? Obesity (Silver Spring) 28:1378–1381. https://doi.org/10.1002/oby.22849

    Article  CAS  PubMed  Google Scholar 

  121. Ekblom-Bak E, Väisänen D, Ekblom B, Blom V, Kallings LV, Hemmingsson E et al (2021) Cardiorespiratory fitness and lifestyle on severe COVID-19 risk in 279,455 adults: a case control study. Int J Behav Nutr Phys Act 18:135. https://doi.org/10.1186/s12966-021-01198-5

    Article  PubMed  PubMed Central  Google Scholar 

  122. Booth FW, Winder WW (2005) Highlighted topic: role of exercise in reducing the risk of diabetes and obesity. J Appl Physiol 99:3–4. https://doi.org/10.1152/japplphysiol.00386.2005

    Article  Google Scholar 

  123. King AJ, Burke LM, Halson SL, Hawley JA (2020) The challenge of maintaining metabolic health during a global pandemic. Sports Med 50:1233–1241. https://doi.org/10.1007/s40279-020-01295-8

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang W, Liu Y, Li Y, Luo B, Lin Z, Chen K et al (2020) Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm 2023(4):e212. https://doi.org/10.1002/mco2.212

    Article  CAS  Google Scholar 

  125. Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G et al (2016) Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 14:290. https://doi.org/10.1186/s12967-016-1044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chaix A, Manoogian ENC, Melkani GC, Panda S (2019) Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr 39:291–315. https://doi.org/10.1146/annurev-nutr-082018-124320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Verd S, Beiro S, Fernandez-Bernabeu M, Ponce-Taylor J (2020) Early dinner or “dinner like a pauper”: evidence, the habitual time of the largest meal of the day - dinner - is predisposing to severe COVID-19 outcome - death. Chronobiol Int 37:804–808. https://doi.org/10.1080/07420528.2020.1772810

    Article  CAS  PubMed  Google Scholar 

  128. Bennett G, Young E, Butler I, Coe S (2021) The impact of lockdown during the COVID-19 outbreak on dietary habits in various population groups: a scoping review. Front Nutr 8:626432. https://doi.org/10.3389/fnut.2021.626432

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mitchell ES, Yang Q, Behr H, Deluca L, Schaffer P. Self-reported food choices before and during COVID-19 lockdown 2020:2020.06.15.20131888. https://doi.org/10.1101/2020.06.15.20131888.

  130. Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N et al (2020) The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 395:912–920. https://doi.org/10.1016/S0140-6736(20)30460-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. de Figueiredo CS, Sandre PC, Portugal LCL, Mázala-de-Oliveira T, da Silva CL, Raony Í et al (2021) COVID-19 pandemic impact on children and adolescents’ mental health: biological, environmental, and social factors. Prog Neuropsychopharmacol Biol Psychiatry 106:110171. https://doi.org/10.1016/j.pnpbp.2020.110171

    Article  CAS  PubMed  Google Scholar 

  132. MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity. J Physiol 595:2915–2930. https://doi.org/10.1113/JP273196

    Article  CAS  PubMed  Google Scholar 

  133. Jamshed H, Steger FL, Bryan DR, Richman JS, Warriner AH, Hanick CJ et al (2022) Effectiveness of early time-restricted eating for weight loss, fat loss, and cardiometabolic health in adults with obesity: a randomized clinical trial. JAMA Intern Med 182:953–962. https://doi.org/10.1001/jamainternmed.2022.3050

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ravussin E, Beyl RA, Poggiogalle E, Hsia DS, Peterson CM (2019) Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity (Silver Spring) 27:1244–1254. https://doi.org/10.1002/oby.22518

    Article  CAS  PubMed  Google Scholar 

  135. Lordan R, Rando HM (2021) COVID-19 Review Consortium, Greene CS. Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems 6:00122–21. https://doi.org/10.1128/mSystems.00122-21

    Article  Google Scholar 

  136. Adefegha SA (2018) Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J Diet Suppl 15:977–1009. https://doi.org/10.1080/19390211.2017.1401573

    Article  PubMed  Google Scholar 

  137. Mazidimoradi A, Alemzadeh E, Alemzadeh E, Salehiniya H (2022) The effect of polyunsaturated fatty acids on the severity and mortality of COVID patients: a systematic review. Life Sci 299:120489. https://doi.org/10.1016/j.lfs.2022.120489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sun Y, Chatterjee R, Ronanki A, Ye K (2022) Circulating polyunsaturated fatty acids and COVID-19: a prospective cohort study and Mendelian randomization analysis. Front Med (Lausanne) 9:923746. https://doi.org/10.3389/fmed.2022.923746

    Article  PubMed  Google Scholar 

  139. Buckley CD, Gilroy DW, Serhan CN (2014) Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 40:315–327. https://doi.org/10.1016/j.immuni.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Calder PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851:469–484. https://doi.org/10.1016/j.bbalip.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  141. McCarty MF, DiNicolantonio JJ (2020) Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis 63:383–385. https://doi.org/10.1016/j.pcad.2020.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  142. von Bülow V, Dubben S, Engelhardt G, Hebel S, Plümäkers B, Heine H et al (2007) Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J Immunol 179:4180–4186. https://doi.org/10.4049/jimmunol.179.6.4180

    Article  Google Scholar 

  143. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49. https://doi.org/10.1126/science.1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ben Abdallah S, Mhalla Y, Trabelsi I, Sekma A, Youssef R, Bel Haj Ali K, Twice-daily oral zinc in the treatment of patients with coronavirus disease, et al (2019) a randomized double-blind controlled trial. Clin Infect Dis 2023(76):185–191. https://doi.org/10.1093/cid/ciac807

    Article  CAS  Google Scholar 

  145. Frontera JA, Rahimian JO, Yaghi S, Liu M, Lewis A, de Havenon A, et al. Treatment with zinc is associated with reduced in-hospital mortality among COVID-19 patients: a multi-center cohort study. Res Sq 2020:rs.3.rs-94509. https://doi.org/10.21203/rs.3.rs-94509/v1.

  146. Gordon AM, Hardigan PC (2021) A case-control study for the effectiveness of oral zinc in the prevention and mitigation of COVID-19. Front Med (Lausanne) 8:756707. https://doi.org/10.3389/fmed.2021.756707

    Article  PubMed  Google Scholar 

  147. Pal A, Squitti R, Picozza M, Pawar A, Rongioletti M, Dutta AK et al (2021) Zinc and COVID-19: basis of current clinical trials. Biol Trace Elem Res 199:2882–2892. https://doi.org/10.1007/s12011-020-02437-9

    Article  CAS  PubMed  Google Scholar 

  148. Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A et al (2021) Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn 39:6306–6316. https://doi.org/10.1080/07391102.2020.1796811

    Article  CAS  PubMed  Google Scholar 

  149. Evans JM, Luby R, Lukaczer D, Rountree R, Stone PM, Guilliams TG et al (2020) The functional medicine approach to COVID-19: virus-specific nutraceutical and botanical agents. Integr Med (Encinitas) 19:34–42

    CAS  PubMed  Google Scholar 

  150. Singh S, Kola P, Kaur D, Singla G, Mishra V, Panesar PS et al (2021) Therapeutic potential of nutraceuticals and dietary supplements in the prevention of viral diseases: a review. Front Nutr 8:679312. https://doi.org/10.3389/fnut.2021.679312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guo J-Y, Huo H-R, Zhao B-S, Liu H-B, Li L-F, Ma Y-Y et al (2006) Cinnamaldehyde reduces IL-1beta-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells. Eur J Pharmacol 537:174–180. https://doi.org/10.1016/j.ejphar.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  152. Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV (2020) Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19. Front Immunol 11:570122. https://doi.org/10.3389/fimmu.2020.570122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bang JS, Oh DH, Choi HM, Sur B-J, Lim S-J, Kim JY et al (2009) Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther 11:R49. https://doi.org/10.1186/ar2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Aldini G, de Courten B, Regazzoni L, Gilardoni E, Ferrario G, Baron G et al (2021) Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radic Res 55:321–330. https://doi.org/10.1080/10715762.2020.1856830

    Article  CAS  PubMed  Google Scholar 

  155. Rothan HA, Abdulrahman AY, Khazali AS, Nor Rashid N, Chong TT, Yusof R (2019) Carnosine exhibits significant antiviral activity against dengue and Zika virus. J Pept Sci 25:e3196. https://doi.org/10.1002/psc.3196

    Article  CAS  PubMed  Google Scholar 

  156. Feehan J, de Courten M, Apostolopoulos V, de Courten B (2021) Nutritional interventions for COVID-19: a role for carnosine? Nutrients 13:1463. https://doi.org/10.3390/nu13051463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Saadah LM, Deiab GIA, Al-Balas Q, Basheti IA (2020) Carnosine to combat novel coronavirus (nCoV): molecular docking and modeling to cocrystallized host angiotensin-converting enzyme 2 (ACE2) and viral spike protein. Molecules 25:5605. https://doi.org/10.3390/molecules25235605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shakoor H, Feehan J, Mikkelsen K, Al Dhaheri AS, Ali HI, Platat C et al (2021) Be well: a potential role for vitamin B in COVID-19. Maturitas 144:108–111. https://doi.org/10.1016/j.maturitas.2020.08.007

    Article  CAS  PubMed  Google Scholar 

  159. Kim Y, Kim H, Bae S, Choi J, Lim SY, Lee N et al (2013) Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of influenza A virus (H3N2) infection. Immune Netw 13:70–74. https://doi.org/10.4110/in.2013.13.2.70

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wimalawansa SJ, Vitamin D (2019) Deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel) 8:30. https://doi.org/10.3390/biology8020030

    Article  CAS  PubMed  Google Scholar 

  161. Ginde AA, Blatchford P, Breese K, Zarrabi L, Linnebur SA, Wallace JI et al (2017) High-dose monthly vitamin D for prevention of acute respiratory infection in older long-term care residents: a randomized clinical trial. J Am Geriatr Soc 65:496–503. https://doi.org/10.1111/jgs.14679

    Article  PubMed  Google Scholar 

  162. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE (2020) Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 11:1451. https://doi.org/10.3389/fimmu.2020.01451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kumrungsee T, Zhang P, Chartkul M, Yanaka N, Kato N (2020) Potential role of vitamin B6 in ameliorating the severity of COVID-19 and its complications. Front Nutr 7:562051. https://doi.org/10.3389/fnut.2020.562051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wei EK, Long T, Katz MH (2021) Nine lessons learned from the COVID-19 pandemic for improving hospital care and health care delivery. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2021.4237

    Article  PubMed  PubMed Central  Google Scholar 

  165. Sachs JD, Karim SSA, Aknin L, Allen J, Brosbøl K, Colombo F et al (2022) The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 400:1224–1280. https://doi.org/10.1016/S0140-6736(22)01585-9

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ray S, Srivastava S (2020) Virtualization of science education: a lesson from the COVID-19 pandemic. J Proteins Proteom 11:77–80. https://doi.org/10.1007/s42485-020-00038-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lefrançois T, Malvy D, Atlani-Duault L, Benamouzig D, Druais P-L, Yazdanpanah Y et al (2023) After 2 years of the COVID-19 pandemic, translating One Health into action is urgent. Lancet 401:789–794. https://doi.org/10.1016/S0140-6736(22)01840-2

    Article  PubMed  Google Scholar 

  168. Banerjee S, Chakraborty S, Ray S (2023) Systems biology of COVID-19 and human diseases: beyond a bird’s eye view, and toward One Health. OMICS 27:2–5. https://doi.org/10.1089/omi.2022.0107

    Article  CAS  PubMed  Google Scholar 

  169. Reis ES, Lange T, Köhl G, Herrmann A, Tschulakow AV, Naujoks J et al (2011) Sleep and circadian rhythm regulate circulating complement factors and immunoregulatory properties of C5a. Brain Behav Immun 25:1416–1426. https://doi.org/10.1016/j.bbi.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  170. Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F, Waridel P et al (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 111:167–172. https://doi.org/10.1073/pnas.1314066111

    Article  CAS  PubMed  Google Scholar 

  171. Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ et al (2018) A circadian rhythm in both complement cascade (ComC) activation and sphingosine-1-phosphate (S1P) levels in human peripheral blood supports a role for the ComC-S1P axis in circadian changes in the number of stem cells circulating in peripheral blood. Stem Cell Rev Rep 14:677–685. https://doi.org/10.1007/s12015-018-9836-7

    Article  CAS  PubMed  Google Scholar 

  172. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk H-D et al (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 106:21407–21412. https://doi.org/10.1073/pnas.0906361106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kitchen GB, Cunningham PS, Poolman TM, Iqbal M, Maidstone R, Baxter M et al (2020) The clock gene Bmal1 inhibits macrophage motility, phagocytosis, and impairs defense against pneumonia. Proc Natl Acad Sci U S A 117:1543–1551. https://doi.org/10.1073/pnas.1915932117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K et al (2014) A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol 192:407–417. https://doi.org/10.4049/jimmunol.1301982

    Article  CAS  PubMed  Google Scholar 

  175. Scheer FAJL, Michelson AD, Frelinger AL, Evoniuk H, Kelly EE, McCarthy M et al (2011) The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS ONE 6:e24549. https://doi.org/10.1371/journal.pone.0024549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Budkowska M, Lebiecka A, Marcinowska Z, Woźniak J, Jastrzębska M, Dołęgowska B (2019) The circadian rhythm of selected parameters of the hemostasis system in healthy people. Thromb Res 182:79–88. https://doi.org/10.1016/j.thromres.2019.08.015

    Article  CAS  PubMed  Google Scholar 

  177. Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE et al (2017) Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 9:eaal2774. https://doi.org/10.1126/scitranslmed.aal2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Silveira EJD, Nascimento Filho CHV, Yujra VQ, Webber LP, Castilho RM, Squarize CH (2020) BMAL1 modulates epidermal healing in a process involving the antioxidative defense mechanism. Int J Mol Sci 21:901. https://doi.org/10.3390/ijms21030901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341:1483–1488. https://doi.org/10.1126/science.1240636

    Article  CAS  PubMed  Google Scholar 

  180. Nobis CC, Dubeau Laramée G, Kervezee L, Maurice De Sousa D, Labrecque N, Cermakian N. The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways. Proc Natl Acad Sci U S A 2019;116:20077–86. https://doi.org/10.1073/pnas.1905080116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lissoni P, Rovelli F, Brivio F, Brivio O, Fumagalli L (1998) Circadian secretions of IL-2, IL-12, IL-6 and IL-10 in relation to the light/dark rhythm of the pineal hormone melatonin in healthy humans. Nat Immun 16:1–5. https://doi.org/10.1159/000069464

    Article  CAS  PubMed  Google Scholar 

  182. Nilsonne G, Lekander M, Åkerstedt T, Axelsson J, Ingre M (2016) Diurnal variation of circulating interleukin-6 in humans: a meta-analysis. PLoS ONE 11:e0165799. https://doi.org/10.1371/journal.pone.0165799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chiang C-K, Xu B, Mehta N, Mayne J, Sun WYL, Cheng K et al (2017) Phosphoproteome profiling reveals circadian clock regulation of posttranslational modifications in the murine hippocampus. Front Neurol 8:110. https://doi.org/10.3389/fneur.2017.00110

    Article  PubMed  PubMed Central  Google Scholar 

  184. Szabó Á, Papin C, Cornu D, Chélot E, Lipinszki Z, Udvardy A et al (2018) Ubiquitylation dynamics of the clock cell proteome and TIMELESS during a circadian cycle. Cell Rep 23:2273–2282. https://doi.org/10.1016/j.celrep.2018.04.064

    Article  CAS  PubMed  Google Scholar 

  185. Mauvoisin D, Atger F, Dayon L, Núñez Galindo A, Wang J, Martin E et al (2017) Circadian and feeding rhythms orchestrate the diurnal liver acetylome. Cell Rep 20:1729–1743. https://doi.org/10.1016/j.celrep.2017.07.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P (2005) Circadian clock control by SUMOylation of BMAL1. Science 309:1390–1394. https://doi.org/10.1126/science.1110689

    Article  CAS  PubMed  Google Scholar 

  187. Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab 25:118–127. https://doi.org/10.1016/j.cmet.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  188. Benavides A, Siches M, Llobera M (1998) Circadian rhythms of lipoprotein lipase and hepatic lipase activities in intermediate metabolism of adult rat. Am J Physiol 275:R811-817. https://doi.org/10.1152/ajpregu.1998.275.3.R811

    Article  CAS  PubMed  Google Scholar 

  189. Tsutsumi K, Inoue Y, Kondo Y (2002) The relationship between lipoprotein lipase activity and respiratory quotient of rats in circadian rhythms. Biol Pharm Bull 25:1360–1363. https://doi.org/10.1248/bpb.25.1360

    Article  CAS  PubMed  Google Scholar 

  190. Lee YJ, Han DH, Pak YK, Cho SH (2012) Circadian regulation of low density lipoprotein receptor promoter activity by CLOCK/BMAL1, Hes1 and Hes6. Exp Mol Med 44:642–652. https://doi.org/10.3858/emm.2012.44.11.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dash S, Xiao C, Morgantini C, Lewis GF (2015) New insights into the regulation of chylomicron production. Annu Rev Nutr 35:265–294. https://doi.org/10.1146/annurev-nutr-071714-034338

    Article  CAS  PubMed  Google Scholar 

  192. Douris N, Kojima S, Pan X, Lerch-Gaggl AF, Duong SQ, Hussain MM et al (2011) Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr Biol 21:1347–1355. https://doi.org/10.1016/j.cub.2011.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354. https://doi.org/10.1126/science.1195027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Reinke H, Asher G (2019) Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol 20:227–241. https://doi.org/10.1038/s41580-018-0096-9

    Article  CAS  PubMed  Google Scholar 

  195. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340. https://doi.org/10.1016/j.cell.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Peek CB, Affinati AH, Ramsey KM, Kuo H-Y, Yu W, Sena LA et al (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342:1243417. https://doi.org/10.1126/science.1243417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ghosh A, Chance B (1964) Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun 16:174–181. https://doi.org/10.1016/0006-291x(64)90357-2

    Article  CAS  PubMed  Google Scholar 

  198. Akimoto H, Kinumi T, Ohmiya Y (2005) Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhythms 20:479–489. https://doi.org/10.1177/0748730405280811

    Article  CAS  PubMed  Google Scholar 

  199. Rey G, Valekunja UK, Feeney KA, Wulund L, Milev NB, Stangherlin A et al (2016) The pentose phosphate pathway regulates the circadian clock. Cell Metab 24:462–473. https://doi.org/10.1016/j.cmet.2016.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F et al (2017) Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab 25:961-974.e4. https://doi.org/10.1016/j.cmet.2017.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T et al (2010) Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 16:1152–1156. https://doi.org/10.1038/nm.2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ashton A, Stoney PN, Ransom J, McCaffery P (2018) Rhythmic diurnal synthesis and signaling of retinoic acid in the rat pineal gland and its action to rapidly downregulate ERK phosphorylation. Mol Neurobiol 55:8219–8235. https://doi.org/10.1007/s12035-018-0964-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Maret S, Franken P, Dauvilliers Y, Ghyselinck NB, Chambon P, Tafti M (2005) Retinoic acid signaling affects cortical synchrony during sleep. Science 310:111–113. https://doi.org/10.1126/science.1117623

    Article  CAS  PubMed  Google Scholar 

  204. Ransom J, Morgan PJ, McCaffery PJ, Stoney PN (2014) The rhythm of retinoids in the brain. J Neurochem 129:366–376. https://doi.org/10.1111/jnc.12620

    Article  CAS  PubMed  Google Scholar 

  205. Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A et al (2015) The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161:1138–1151. https://doi.org/10.1016/j.cell.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Caster SZ, Castillo K, Sachs MS, Bell-Pedersen D (2016) Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Proc Natl Acad Sci U S A 113:9605–9610. https://doi.org/10.1073/pnas.1525268113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Magnone MC, Langmesser S, Bezdek AC, Tallone T, Rusconi S, Albrecht U (2014) The mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front Neurol 5:289. https://doi.org/10.3389/fneur.2014.00289

    Article  PubMed  Google Scholar 

  208. Adamovich Y, Ladeuix B, Sobel J, Manella G, Neufeld-Cohen A, Assadi MH et al (2019) Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metab 29:1092-1103.e3. https://doi.org/10.1016/j.cmet.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  209. Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 21:307–315. https://doi.org/10.1016/0891-5849(96)00046-9

    Article  CAS  PubMed  Google Scholar 

  210. Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15:894–903. https://doi.org/10.2174/1568026615666150220120946

    Article  CAS  PubMed  Google Scholar 

  211. Lee JH, Sancar A (2011) Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A 108:12036–12041. https://doi.org/10.1073/pnas.1108125108

    Article  PubMed  PubMed Central  Google Scholar 

  212. Hua H, Wang Y, Wan C, Liu Y, Zhu B, Yang C et al (2006) Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci 97:589–596. https://doi.org/10.1111/j.1349-7006.2006.00225.x

    Article  CAS  PubMed  Google Scholar 

  213. Wang F, Li C, Yongluo null, Chen L. The circadian gene clock plays an important role in cell apoptosis and the DNA damage response in vitro. Technol Cancer Res Treat 2016;15:480–6. https://doi.org/10.1177/1533034615585433.

  214. Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE et al (2010) A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468:112–116. https://doi.org/10.1038/nature09470

    Article  CAS  PubMed  Google Scholar 

  215. Schlaen RG, Mancini E, Sanchez SE, Perez-Santángelo S, Rugnone ML, Simpson CG et al (2015) The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms. Proc Natl Acad Sci U S A 112:9382–9387. https://doi.org/10.1073/pnas.1504541112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sram RJ, Binkova B, Rossner P (2012) Vitamin C for DNA damage prevention. Mutat Res 733:39–49. https://doi.org/10.1016/j.mrfmmm.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  217. Carr AC, Maggini S (2017) Vitamin C and Immune Function. Nutrients 9:1211. https://doi.org/10.3390/nu9111211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fernandez GJ, Ramírez-Mejía JM, Urcuqui-Inchima S (2022) Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. J Nutr Biochem 109:109105. https://doi.org/10.1016/j.jnutbio.2022.109105

    Article  CAS  PubMed  Google Scholar 

  219. Di Rosa M, Malaguarnera M, Nicoletti F, Malaguarnera L (2011) Vitamin D3: a helpful immuno-modulator. Immunology 134:123–139. https://doi.org/10.1111/j.1365-2567.2011.03482.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Farzana M, Shahriar S, Jeba FR, Tabassum T, Araf Y, Ullah MA et al (2022) Functional food: complementary to fight against COVID-19. Beni Suef Univ J Basic Appl Sci 11:33. https://doi.org/10.1186/s43088-022-00217-z

    Article  PubMed  PubMed Central  Google Scholar 

  221. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357. https://doi.org/10.2119/2008-00033.Prasad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52:1273–1280. https://doi.org/10.1002/mnfr.200700330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gombart AF, Pierre A, Maggini S (2020) A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients 12:236. https://doi.org/10.3390/nu12010236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MCH, Slusarenko AJ et al (2021) The effect of allicin on the proteome of SARS-CoV-2 infected Calu-3 cells. Front Microbiol 12:746795. https://doi.org/10.3389/fmicb.2021.746795

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zhao J, Zhang X, Dong L, Wen Y, Zheng X, Zhang C et al (2015) Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br J Pharmacol 172:5009–5023. https://doi.org/10.1111/bph.13270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Dilokthornsakul W, Kosiyaporn R, Wuttipongwaragon R, Dilokthornsakul P (2022) Potential effects of propolis and honey in COVID-19 prevention and treatment: a systematic review of in silico and clinical studies. J Integr Med 20:114–125. https://doi.org/10.1016/j.joim.2022.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  227. Piacentini R, Centi L, Miotto M, Milanetti E, Di Rienzo L, Pitea M et al (2022) Lactoferrin inhibition of the complex formation between ACE2 receptor and SARS CoV-2 recognition binding domain. Int J Mol Sci 23:5436. https://doi.org/10.3390/ijms23105436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Nguyen QV, Chong LC, Hor Y-Y, Lew L-C, Rather IA, Choi S-B (2022) Role of probiotics in the management of COVID-19: a computational perspective. Nutrients 14:274. https://doi.org/10.3390/nu14020274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kurian SJ, Unnikrishnan MK, Miraj SS, Bagchi D, Banerjee M, Reddy BS et al (2021) Probiotics in prevention and treatment of COVID-19: current perspective and future prospects. Arch Med Res 52:582–594. https://doi.org/10.1016/j.arcmed.2021.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD (2021) Carotenoids: therapeutic strategy in the battle against viral emerging diseases, COVID-19: an overview. Prev Nutr Food Sci 26:241–261. https://doi.org/10.3746/pnf.2021.26.3.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Yi Y-S (2022) Potential benefits of ginseng against COVID-19 by targeting inflammasomes. J Ginseng Res 46:722–730. https://doi.org/10.1016/j.jgr.2022.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  232. Hathaway D, Pandav K, Patel M, Riva-Moscoso A, Singh BM, Patel A et al (2020) Omega 3 fatty acids and COVID-19: a comprehensive review. Infect Chemother 52:478–495. https://doi.org/10.3947/ic.2020.52.4.478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jafarzadeh A, Jafarzadeh S, Nemati M (2021) Therapeutic potential of ginger against COVID-19: Is there enough evidence? J Traditional Chi Med Sci 8:267–279. https://doi.org/10.1016/j.jtcms.2021.10.001

    Article  CAS  Google Scholar 

  234. Gomaa AA, Abdel-Wadood YA (2021) The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. Phytomed Plus 1:100043. https://doi.org/10.1016/j.phyplu.2021.100043

    Article  PubMed  PubMed Central  Google Scholar 

  235. Srivastava V, Yadav A, Sarkar P (2022) Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc 49:2999–3007. https://doi.org/10.1016/j.matpr.2020.10.055

    Article  CAS  PubMed  Google Scholar 

  236. Baildya N, Khan AA, Ghosh NN, Dutta T, Chattopadhyay AP (2021) Screening of potential drug from Azadirachta indica (Neem) extracts for SARS-CoV-2: an insight from molecular docking and MD-simulation studies. J Mol Struct 1227:129390. https://doi.org/10.1016/j.molstruc.2020.129390

    Article  CAS  PubMed  Google Scholar 

  237. Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N et al (2022) Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn 40:190–203. https://doi.org/10.1080/07391102.2020.1810778

    Article  CAS  PubMed  Google Scholar 

  238. Rajagopal K, Byran G, Jupudi S, Vadivelan R (2020) Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID-19): an in silico approach. Intl J Health Allied Sci 9:43. https://doi.org/10.4103/ijhas.IJHAS_55_20

    Article  Google Scholar 

  239. Tsvetkov V, Varizhuk A, Kozlovskaya L, Shtro A, Lebedeva O, Komissarov A et al (2021) EGCG as an anti-SARS-CoV-2 agent: preventive versus therapeutic potential against original and mutant virus. Biochimie 191:27–32. https://doi.org/10.1016/j.biochi.2021.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SR (Sandipan Ray) acknowledges funding from the Indian Council of Medical Research (ICMR/BMS/Adhoc/184/2022-23) and the Indian Institute of Technology Hyderabad (IITH/BME/F163/SOCH3). Shashikant Ray (SR) is supported by an Indian Council of Medical Research-DHR International Postdoctoral Fellowship. SD is supported by a Council of Scientific and Industrial Research-University Grants Commission fellowship (UGC-WB10602148). Figure 1 and part of Figure 3 are created with BioRender.com. Parts of Figures 2 and 3 were drawn by using pictures from Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

Funding

The study was funded by the Indian Council of Medical Research (ICMR/BMS/Adhoc/184/2022–23) and the Indian Institute of Technology Hyderabad (IITH/BME/F163/SOCH3).

Author information

Authors and Affiliations

Authors

Contributions

SR (Sandipan Ray), SD, and SR (Shashikant Ray) conceived this article. SD, RK, SB, SR (Shashikant Ray), and SR (Sandipan Ray) wrote the manuscript. Figures are drawn by SD. All the authors approved the submitted version of the manuscript.

Corresponding authors

Correspondence to Shashikant Ray or Sandipan Ray.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Khan, R., Banerjee, S. et al. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04178-5

Keywords

Navigation