Skip to main content
Log in

Sexual Motivation: A Comparative Approach in Vertebrate Species

  • Preclinical and Psychophysiology (F Guarraci and L Marson, Section Editors)
  • Published:
Current Sexual Health Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

We review three different components of sexual motivation: appetitive behaviors, sexual incentive motivation, and paced mating in rats, mice and voles. These components occur in semi-natural or natural conditions. We also described behaviors in other species that are indicative of sexual motivation.

Recent Findings

Sexual motivation is the mechanism responsible for activating, directing, and causing persistence of behaviors directed towards a sexual incentive. Appropriate sexual motivation is crucial for the survival of any species that reproduces sexually, but not for the survival of any individual. We describe the possible role of the social decision-making network in sexual motivation whereby dopamine is involved in wanting sex, opioids are involved in liking sex, and oxytocin is involved in pair bond formation. Brain areas and neuromodulators in the social decision-making network are common across vertebrate lineage.

Summary

Understanding the variables involved in sexual motivation in different species can lead to a framework of basic mechanisms of sexual motivation, and such a framework could help us understand human sexual motivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Toates F. An integrative theoretical framework for understanding sexual motivation, arousal, and behavior. Journal of Sex Research. 2009;46(2–3):168–93.

    Article  PubMed  Google Scholar 

  2. Ågmo A. Chapter 1—on the purpose of sex and some notes on scientific explanations. Functional and dysfunctional sexual behavior. Oxford: Academic Press; 2007. p. 1–29.

    Book  Google Scholar 

  3. Agmo A. Sexual motivation—an inquiry into events determining the occurrence of sexual behavior. Behav Brain Res. 1999;105(1):129–50.

    Article  PubMed  CAS  Google Scholar 

  4. Ågmo A. An incentive motivational framework and the description of sexual behaviors. In: Chapter 2—an incentive motivational framework and the description of sexual behaviors. Functional and dysfunctional sexual behavior. Oxford: Academic Press; 2007. p. 30–76.

    Chapter  Google Scholar 

  5. •• Paredes RG. Opioids and sexual reward. Pharmacol Biochem Behav. 2014;121:124–31. This paper describes evidence of the involvement of opioids in sexual reward in males and females.

    Article  PubMed  CAS  Google Scholar 

  6. Agmo A. Unconditioned sexual incentive motivation in the male Norway rat (Rattus norvegicus). J Comp Psychol. 2003;117(1):3–14.

    Article  PubMed  Google Scholar 

  7. Portillo W, Paredes RG. Sexual and olfactory preference in noncopulating male rats. Physiol Behav. 2003;80(1):155–62.

    Article  PubMed  CAS  Google Scholar 

  8. Alexander BM, Stellflug JN, Rose JD, Fitzgerald JA, Moss GE. Behavior and endocrine changes in high-performing, low-performing, and male-oriented domestic rams following exposure to rams and ewes in estrus when copulation is precluded. J Anim Sci. 1999;77(7):1869–74.

    Article  PubMed  CAS  Google Scholar 

  9. Portillo W, Antonio-Cabrera E, Camacho FJ, Díaz NF, Paredes RG. Behavioral characterization of non-copulating male mice. Horm Behav. 2013;64(1):70–80.

    Article  PubMed  CAS  Google Scholar 

  10. Stefanick ML, Davidson JM. Genital responses in noncopulators and rats with lesions in the medical preoptic area or midthoracic spinal cord. Physiol Behav. 1987;41(5):439–44.

    Article  PubMed  CAS  Google Scholar 

  11. Snoeren EM, Chan JS, de Jong TR, Waldinger MD, Olivier B, Oosting RS. A new female rat animal model for hypoactive sexual desire disorder; behavioral and pharmacological evidence. J Sex Med. 2011;8(1):44–56.

    Article  PubMed  CAS  Google Scholar 

  12. • Ventura-Aquino E, Paredes RG. Animal models in sexual medicine: the need and importance of studying sexual motivation. Sex Med Rev. 2017;5(1):5–19. This study describes different models used to study sexual motivation including behavioral amd molecular biology approaches

    Article  PubMed  Google Scholar 

  13. Giuliano F, McKenna K, Srilatha B, Pfaus JG. Preclinical research and animal models in sexual medicine. Standard Practice in Sexual Medicine 2008. p. 1–17.

  14. Pfaus JG, Kippin TE, Coria-Avila G. What can animal models tell us about human sexual response? Annual Review of Sex Research. 2003;14:1–63.

    PubMed  Google Scholar 

  15. Kim SW, Schenck CH, Grant JE, Yoon G, Dosa PI, Odlaug BL, et al. Neurobiology of sexual desire. NeuroQuantology. 2013;11(2):332–59.

    Article  Google Scholar 

  16. • González-Flores O L, Hoffman K A, Delgadillo J, Keller M, Paredes R. Female sexual behavior in rodents, lagomorphs, and goats. In: Pfaff D, Joëls M, editors. Hormones, brain and behavior. 1. Third ed: Elsevier; 2017. p. 59–82. This review describes aspects of appettitive behaviors in different species.

  17. Ventura-Aquino E, Fernández-Guasti A. Reduced proceptivity and sex-motivated behaviors in the female rat after repeated copulation in paced and non-paced mating: effect of changing the male. Physiol Behav. 2013;120:70–6.

    Article  PubMed  CAS  Google Scholar 

  18. Ventura-Aquino E, Fernández-Guasti A, Paredes RG. Hormones and the Coolidge effect. Mol Cell Endocrinol 2017.

  19. Ågmo A, Turi AL, Ellingsen E, Kaspersen H. Preclinical models of sexual desire: conceptual and behavioral analyses. Pharmacol Biochem Be. 2004;78(3):379–404.

    Article  CAS  Google Scholar 

  20. • Chu X, Agmo A. Sociosexual behaviors during the transition from non-receptivity to receptivity in rats housed in a seminatural environment. Behav Process. 2015;113:24–34. A detailed study desribing how sexual behavior is expressed in seminatural conditions.

    Article  Google Scholar 

  21. Erskine MS, Baum MJ. Effects of paced coital stimulation on termination of estrus and brain indoleamine levels in female rats. Pharmacol Biochem Behav. 1982;17(4):857–61.

    Article  PubMed  CAS  Google Scholar 

  22. • Meerts SH, Schairer RS, Farry-Thorn ME, Johnson EG, Strnad HK. Previous sexual experience alters the display of paced mating behavior in female rats. Horm Behav. 2014;65(5):497–504. This study demonstrates how sexual experience affects the display of subsequent sexual behavior.

    Article  PubMed  Google Scholar 

  23. Beach FA, Jordan L. Sexual exhaustion and recovery in the male rat. Q J Exp Psychol. 1956;8(3):121–33.

    Article  Google Scholar 

  24. Snoeren EM, Lehtimaki J, Agmo A. Effect of dexmedetomidine on ejaculatory behavior and sexual motivation in intact male rats. Pharmacol Biochem Behav. 2012;103(2):345–52.

    Article  PubMed  CAS  Google Scholar 

  25. Smale L, Nelson RJ, Zucker I. Neuroendocrine responsiveness to oestradiol and male urine in neonatally androgenized prairie voles (Microtus ochrogaster). J Reprod Fertil. 1985;74(2):491–6.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor SA, Salo AL, Dewsbury DA. Estrus induction in four species of voles (Microtus). J Comp Psychol. 1992;106(4):366–73.

    Article  PubMed  CAS  Google Scholar 

  27. Carter CS, Witt DM, Auksi T, Casten L. Estrogen and the induction of lordosis in female and male prairie voles (Microtus ochrogaster). Horm Behav. 1987;21(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  28. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9(1):65–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol. 2016;71(8):670–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bindra D. How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcements. Behav Brain Sci. 1978;1(1):41–52.

    Article  Google Scholar 

  31. •• Le Moëne O, Ågmo A. The neuroendocrinology of sexual attraction. Frontiers in neuroendocrinology. 2017. The recent review describes the different aspects that make animals attractive to a potential mate and the influence of hormones in this process.

  32. Paredes RG, Tzschentke T, Nakach N. Lesions of the medial preoptic area/anterior hypothalamus (MPOA/AH) modify partner preference in male rats. Brain Res. 1998;813(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  33. • Snoeren EMS, Ågmo A. The incentive value of males’ 50-khz ultrasonic vocalizations for female rats (rattus norvegicus). J Comp Psychol. 2014;128(1):40–55. The study elucidates the contribution of ultrasonic vocalizations in female sexual motivation.

    Article  PubMed  Google Scholar 

  34. Snoeren EMS, Ågmo A. Female ultrasonic vocalizations have no incentive value for male rats. Behav Neurosci. 2013;127(3):439–50.

    Article  PubMed  Google Scholar 

  35. Ågmo A, Snoeren EMS. Silent or vocalizing rats copulate in a similar manner. PLoS One. 2015;10(12):e0144164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Agmo A, Snoeren EM. A cooperative function for multisensory stimuli in the induction of approach behavior of a potential mate. PLoS One. 2017;12(3):e0174339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Agmo A, Choleris E, Kavaliers M, Pfaff DW, Ogawa S. Social and sexual incentive properties of estrogen receptor alpha, estrogen receptor beta, or oxytocin knockout mice. Genes Brain Behav. 2008;7(1):70–7.

    PubMed  CAS  Google Scholar 

  38. Hoffmann F, Musolf K, Penn DJ. Freezing urine reduces its efficacy for eliciting ultrasonic vocalizations from male mice. Physiol Behav. 2009;96(4):602–5.

    Article  PubMed  CAS  Google Scholar 

  39. Pomerantz SM, Nunez AA, Jay Bean N. Female behavior is affected by male ultrasonic vocalizations in house mice. Physiol Behav. 1983;31(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  40. Chabout J, Sarkar A, Dunson DB, Jarvis ED. Male mice song syntax depends on social contexts and influences female preferences. Front Behav Neurosci. 2015;9:76.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mcclintock MK, Adler NT. Role of female during copulation in wild and domestic Norway rats (Rattus-Norvegicus). Behaviour. 1978;67:67–96.

    Article  Google Scholar 

  42. Chu X, Agmo A. Sociosexual behaviors of male rats (Rattus norvegicus) in a seminatural environment. J Comp Psychol. 2015;129(2):132–44.

    Article  PubMed  Google Scholar 

  43. McClintock MK. Estrous synchrony and its mediation by airborne chemical communication (Rattus norvegicus). Horm Behav. 1978;10(3):264–75.

    Article  PubMed  CAS  Google Scholar 

  44. Mcclintock MK, Anisko JJ. Group mating among Norway rats .1. Sex-differences in the pattern and neuroendocrine consequences of copulation. Anim Behav. 1982;30(May):398–409.

    Article  Google Scholar 

  45. Garey J, Kow LM, Huynh W, Ogawa S, Pfaff DW. Temporal and spatial quantitation of nesting and mating behaviors among mice housed in a semi-natural environment. Horm Behav. 2002;42(3):294–306.

    Article  PubMed  CAS  Google Scholar 

  46. Mcclintock MK, Anisko JJ, Adler NT. Group mating among Norway rats 2. The social dynamics of copulation—competition, cooperation, and mate choice. Anim Behav. 1982;30(May):410–25.

    Article  Google Scholar 

  47. Pfaus JG, Smith WJ, Coopersmith CB. Appetitive and consummatory sexual behaviors of female rats in bilevel chambers: I. A correlational and factor analysis and the effects of ovarian hormones. Horm Behav. 1999;35(3):224–40.

    Article  PubMed  CAS  Google Scholar 

  48. Erskine MS. Effects of paced coital stimulation on estrus duration in intact cycling rats and ovariectomized and ovariectomized-adrenalectomized hormone-primed rats. Behav Neurosci. 1985;99(1):151–61.

    Article  PubMed  CAS  Google Scholar 

  49. Ismail N, Gelez H, Lachapelle I, Pfaus JG. Pacing conditions contribute to the conditioned ejaculatory preference for a familiar female in the male rat. Physiol Behav. 2009;96(2):201–8.

    Article  PubMed  CAS  Google Scholar 

  50. Yang LY, Clements LG. MPOA lesions affect female pacing of copulation in rats. Behav Neurosci. 2000;114(6):1191–202.

    Article  PubMed  CAS  Google Scholar 

  51. Erskine MS. Solicitation behavior in the estrous female rat: a review. Horm Behav. 1989;23(4):473–502.

    Article  PubMed  CAS  Google Scholar 

  52. Paredes RG. Evaluating the neurobiology of sexual reward. ILAR J. 2009;50(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  53. Paredes RG, Vazquez B. What do female rats like about sex? Paced mating. Behav Brain Res. 1999;105(1):117–27.

    Article  PubMed  CAS  Google Scholar 

  54. Martínez I, Paredes RG. Only self-paced mating is rewarding in rats of both sexes. Horm Behav. 2001;40(4):510–7.

    Article  PubMed  Google Scholar 

  55. Agmo A, Berenfeld R. Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav Neurosci. 1990;104(1):177–82.

    Article  PubMed  CAS  Google Scholar 

  56. Paredes RG, Martinez I. Naloxone blocks place preference conditioning after paced mating in female rats. Behav Neurosci. 2001;115(6):1363–7.

    Article  PubMed  CAS  Google Scholar 

  57. Agmo A, Gomez M. Sexual reinforcement is blocked by infusion of naloxone into the medial preoptic area. Behav Neurosci. 1993;107(5):812–8.

    Article  PubMed  CAS  Google Scholar 

  58. Garcia-Horsman SP, Agmo A, Paredes RG. Infusions of naloxone into the medial preoptic area, ventromedial nucleus of the hypothalamus, and amygdala block conditioned place preference induced by paced mating behavior. Horm Behav. 2008;54(5):709–16.

    Article  PubMed  CAS  Google Scholar 

  59. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22(3):629–34.

    Article  PubMed  CAS  Google Scholar 

  60. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. •• Bedos M, Portillo W, Paredes RG. Neurogenesis and sexual behavior. Front Neuroendocrinol. 2018. The study describes how sexual behavior in males and females induces the formation of new cells and neurons in the olfactory bulbs and hippocampus.

  62. Santoyo-Zedillo M, Portillo W, Paredes RG. Neurogenesis in the olfactory bulb induced by paced mating in the female rat is opioid dependent. PLoS One. 2017;12(11):e0186335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Johansen JA, Clemens LG, Nunez AA. Characterization of copulatory behavior in female mice: evidence for paced mating. Physiol Behav. 2008;95(3):425–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ulloa M, Portillo W, Diaz NF, Young LJ, Camacho FJ, Rodriguez VM, et al. Mating and social exposure induces an opioid-dependent conditioned place preference in male but not in female prairie voles (Microtus ochrogaster). Horm Behav. 2018;97:47–55.

    Article  PubMed  CAS  Google Scholar 

  65. •• Mc Cracken K, Lewis R, Curtis JT. Female-Paced Mating Does Not Affect Pair-Bond Expression byMicrotus ochrogaster(Prairie Vole) Males. Northeast Nat. 2015;22(3):541–50. The study demonstrates that paced mating does not alter reproductive success or pair-bond formation.

    Article  Google Scholar 

  66. Sommer-Trembo C, Plath M, Gismann J, Helfrich C, Bierbach D. Context-dependent female mate choice maintains variation in male sexual activity. Royal Society Open Science. 2017;4(7):170303.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bierbach D, Schulte M, Herrmann N, Tobler M, Stadler S, Jung CT, et al. Predator-induced changes of female mating preferences: innate and experiential effects. BMC Evol Biol. 2011;11(1):190.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Godin J-GJ, Briggs SE. Female mate choice under predation risk in the guppy. Anim Behav. 1996;51(1):117–30.

    Article  Google Scholar 

  69. McKibben JR, Bass AH. Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am. 1998;104(6):3520–33.

    Article  PubMed  CAS  Google Scholar 

  70. Forlano PM, Bass AH. Neural and hormonal mechanisms of reproductive-related arousal in fishes. Horm Behav. 2011;59(5):616–29.

    Article  PubMed  CAS  Google Scholar 

  71. de Bournonville C, Balthazart J, Ball GF, Cornil CA. Non-ovarian aromatization is required to activate female sexual motivation in testosterone-treated ovariectomized quail. Horm Behav. 2016;83:45–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol. 2011;519(18):3599–639.

    Article  PubMed  Google Scholar 

  73. O'Connell LA, Hofmann HA. Evolution of a vertebrate social decision-making network. Science. 2012;336(6085):1154–7.

    Article  PubMed  CAS  Google Scholar 

  74. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765–76.

    Article  PubMed  Google Scholar 

  75. Paredes RG. Medial preoptic area/anterior hypothalamus and sexual motivation. Scand J Psychol. 2003;44(3):203–12.

    Article  PubMed  Google Scholar 

  76. Portillo W, Castillo CG, Retana-Márquez S, Roselli CE, Paredes RG. Neuronal activity of aromatase enzyme in non-copulating male rats. J Neuroendocrinol. 2007;19(2):139–41.

    Article  PubMed  CAS  Google Scholar 

  77. Antonio-Cabrera E, Paredes RG. Testosterone or oestradiol implants in the medial preoptic area induce mating in noncopulating male rats. J Neuroendocrinol. 2014;26(7):448–58.

    Article  PubMed  CAS  Google Scholar 

  78. Whitney JF. Effect of medial preoptic lesions on sexual behavior of female rats is determined by test situation. Behav Neurosci. 1986;100(2):230–5.

    Article  PubMed  CAS  Google Scholar 

  79. Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci. 1992;106(1):181–91.

    Article  PubMed  CAS  Google Scholar 

  80. Fiorino DF, Coury A, Phillips AG. Dynamic changes in nucleus Accumbens dopamine efflux during the Coolidge effect in male rats. J Neurosci. 1997;17(12):4849–55.

    Article  PubMed  CAS  Google Scholar 

  81. Pfaus JG, Damsma G, Wenkstern D, Fibiger HC. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Res. 1995;693(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  82. Becker JB, Rudick CN, Jenkins WJ. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J Neurosci. 2001;21(9):3236–41.

    Article  PubMed  CAS  Google Scholar 

  83. Fujiwara M, Chiba A. Sexual odor preference and dopamine release in the nucleus accumbens by estrous olfactory cues in sexually naïve and experienced male rats. Physiol Behav. 2018;185:95–102.

    Article  PubMed  CAS  Google Scholar 

  84. Vanderschuren LJMJ, Achterberg EJM, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev. 2016;70:86–105.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Peciña S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci. 2003;23(28):9395–402.

    Article  PubMed  Google Scholar 

  86. Paredes RG, Agmo A. Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence. Prog Neurobiol. 2004;73(3):179–226.

    Article  PubMed  CAS  Google Scholar 

  87. Yoest KE, Cummings JA, Becker JB. Estradiol, dopamine and motivation. Cent Nerv Syst Agents Med Chem. 2014;14(2):83–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xiao L, Becker JB. Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: effects of estrous cycle and gonadectomy. Neurosci Lett. 1994;180(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  89. Kato A, Sakuma Y. Neuronal activity in female rat preoptic area associated with sexually motivated behavior. Brain Res. 2000;862(1):90–102.

    Article  PubMed  CAS  Google Scholar 

  90. Mahler SV, Berridge KC. Which cue to “want?” central amygdala opioid activation enhances and focuses incentive salience on a Prepotent reward cue. J Neurosci. 2009;29(20):6500–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mahler SV, Berridge KC. What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology. 2012;221(3):407–26.

    Article  PubMed  CAS  Google Scholar 

  92. • DiFeliceantonio AG, Berridge KC. Dorsolateral neostriatum contribution to incentive salience: opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. Eur J Neurosci. 2016;43(9):1203–18. The study describes the contribution of dopamine and opioids in reward and motivation.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gentner TQ, Hulse SH. Female European starling preference and choice for variation in conspecific male song. Anim Behav. 2000;59(2):443–58.

    Article  PubMed  CAS  Google Scholar 

  94. Pawlisch BA, Riters LV. Selective behavioral responses to male song are affected by the dopamine agonist GBR-12909 in female European starlings (Sturnus vulgaris). Brain Res. 2010;1353:113–24.

    Article  PubMed  CAS  Google Scholar 

  95. Riters LV, Ellis JMS, Angyal CS, Borkowski VJ, Cordes MA, Stevenson SA. Links between breeding readiness, opioid immunolabeling, and the affective state induced by hearing male courtship song in female European starlings (Sturnus vulgaris). Behav Brain Res. 2013;247:117–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Spool JA, Riters LV. Associations between environmental resources and the “wanting” and “liking” of male song in female songbirds. Integr Comp Biol. 2017;57(4):835–45.

    Article  PubMed  PubMed Central  Google Scholar 

  97. •• Kelm-Nelson CA, Stevenson SA, Cordes MA, Riters LV. Modulation of male song by naloxone in the medial preoptic nucleus. Behav Neurosci. 2013;127(3):451–7. This study describes the contribution of opioids to the motivation induced by singing in birds.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kleitz-Nelson HK, Dominguez JM, Cornil CA, Ball GF. Is sexual motivational state linked to dopamine release in the medial preoptic area? Behav Neurosci. 2010;124(2):300–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kleitz-Nelson HK, Dominguez JM, Ball GF. Dopamine release in the medial preoptic area is related to hormonal action and sexual motivation. Behav Neurosci. 2010;124(6):773–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28(3):309–69.

    Article  PubMed  CAS  Google Scholar 

  101. Blitzer DS, Wells TE, Hawley WR. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats. Horm Behav. 2017;94:33–9.

    Article  PubMed  CAS  Google Scholar 

  102. Holley A, Bellevue S, Vosberg D, Wenzel K, Roorda S, Pfaus JG. The role of oxytocin and vasopressin in conditioned mate guarding behavior in the female rat. Physiol Behav. 2015;144:7–14.

    Article  PubMed  CAS  Google Scholar 

  103. Burkett JP, Young LJ. The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction. Psychopharmacology. 2012;224(1):1–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. • Numan M, Young LJ. Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences, and broader implications. Horm Behav. 2016;77:98–112. This manuscript reviews the neural mechanisms pomoting mother-infant bonding in the rat and in monogomus species.

    Article  PubMed  CAS  Google Scholar 

  105. Pfaus JG, Kippin TE, Coria-Avila GA, Gelez H, Afonso VM, Ismail N, et al. Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Arch Sex Behav. 2012;41(1):31–62.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Francisco Camacho, Deisy Gasca, Martín García, Jessica Gonzalez, and Alejandra Castilla for their excellent technical assistance.

Funding

This research is supported by CONACYT grants 253631, 252756 Fronteras 374, and UNAM-DGAPA IN203518, IN202810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl G. Paredes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Preclinical and Psychophysiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura-Aquino, E., Portillo, W. & Paredes, R.G. Sexual Motivation: A Comparative Approach in Vertebrate Species. Curr Sex Health Rep 10, 114–123 (2018). https://doi.org/10.1007/s11930-018-0156-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11930-018-0156-3

Keywords

Navigation