Skip to main content

Advertisement

Log in

Zooming in and out of ferroptosis in human disease

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 2021; 22(4): 266–282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Green DR. The coming decade of cell death research: five riddles. Cell 2019; 177(5): 1094–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16(12): 1180–1191

    Article  CAS  PubMed  Google Scholar 

  5. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. Ferroptosis: process and function. Cell Death Differ 2016; 23(3): 369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim SE, Zhang L, Ma K, Riegman M, Chen F, Ingold I, Conrad M, Turker MZ, Gao M, Jiang X, Monette S, Pauliah M, Gonen M, Zanzonico P, Quinn T, Wiesner U, Bradbury MS, Overholtzer M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 2016; 11(11): 977–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, Kapralov AA, Amoscato AA, Jiang J, Anthonymuthu T, Mohammadyani D, Yang Q, Proneth B, Klein-Seetharaman J, Watkins S, Bahar I, Greenberger J, Mallampalli RK, Stockwell BR, Tyurina YY, Conrad M, Bayir H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017; 13(1): 81–90

    Article  CAS  PubMed  Google Scholar 

  8. Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, Ward CC, Cho K, Patti GJ, Nomura DK, Olzmann JA, Dixon SJ. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 2019; 26(3): 420–432.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, Paradkar S, Boehnke N, Deik AA, Reinhardt F, Eaton JK, Ferguson B, Wang W, Fairman J, Keys HR, Dančík V, Clish CB, Clemons PA, Hammond PT, Boyer LA, Weinberg RA, Schreiber SL. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020; 585(7826): 603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Perez MA, Magtanong L, Dixon SJ, Watts JL. Dietary lipids induce ferroptosis in Caenorhabditis elegans and human cancer cells. Dev Cell 2020; 54(4): 447–454.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui W, Liu D, Gu W, Chu B. Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis. Cell Death Differ 2021; 28(8): 2536–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, He L, Liu B, Ying Y, Xu J, Yu M, Dang J, Liu K. Pharmacological inhibition of sphingolipid synthesis reduces ferroptosis by stimulating the HIF-1 pathway. iScience 2022; 25(7): 104533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thayyullathil F, Cheratta AR, Alakkal A, Subburayan K, Pallichankandy S, Hannun YA, Galadari S. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis 2021; 12(1): 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thomas JP, Geiger PG, Maiorino M, Ursini F, Girotti AW. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta 1990; 1045(3): 252–260

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Bermudez J, Baudrier L, Bayraktar EC, Shen Y, La K, Guarecuco R, Yucel B, Fiore D, Tavora B, Freinkman E, Chan SH, Lewis C, Min W, Inghirami G, Sabatini DM, Birsoy K. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 2019; 567(7746): 118–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33(5): 1001–1012.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JP, Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017; 13(1): 91–98

    Article  CAS  PubMed  Google Scholar 

  18. Zhang HL, Hu BX, Li ZL, Du T, Shan JL, Ye ZP, Peng XD, Li X, Huang Y, Zhu XY, Chen YH, Feng GK, Yang D, Deng R, Zhu XF. PKCßII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol 2022; 24(1): 88–98

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN, Jiang X. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 2019; 572(7769): 402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, Maslar K, Zhou Y, Cai KQ, Tan Y, Doll S, Conrad M, Subramanian A, Bayir H, Kagan VE, Rennefahrt U, Peterson JR. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun 2021; 12(1): 2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM, Eto M, Tamura-Nakano M, Yanobu-Takanashi R, Mukumoto Y, Kiyonari H, Okamura T, Kita Y, Shindou H, Shimizu T. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife 2015; 4: e06328

    Article  PubMed  PubMed Central  Google Scholar 

  22. Venkatesh D, O’Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE, Kengmana ES, Aron AT, Klein AM, Csuka JM, Moon SH, Conrad M, Chang CJ, Lo DC, D’Alessandro A, Prives C, Stockwell BR. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 2020; 34(7–8): 526–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Röh S, Hoffmann R, Warscheid B, Hermeking H. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics 2011; 10(8): M111.010462

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bai C, Gao Y, Zhang X, Yang W, Guan W. MicroRNA-34c acts as a bidirectional switch in the maturation of insulin-producing cells derived from mesenchymal stem cells. Oncotarget 2017; 8(63): 106844–106857

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dong LH, Huang JJ, Zu P, Liu J, Gao X, Du JW, Li YF. CircKDM4C upregulates P53 by sponging hsa-let-7b-5p to induce ferroptosis in acute myeloid leukemia. Environ Toxicol 2021; 36(7): 1288–1302

    Article  CAS  PubMed  Google Scholar 

  26. Ye S, Xu M, Zhu T, Chen J, Shi S, Jiang H, Zheng Q, Liao Q, Ding X, Xi Y. Cytoglobin promotes sensitivity to ferroptosis by regulating p53-YAP1 axis in colon cancer cells. J Cell Mol Med 2021; 25(7): 3300–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520(7545): 57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, Rabadan R, Jiang X, Stockwell BR, Gu W. iPLA2α-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 2021; 12(1): 3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, Nakada D, Stockwell BR, Gan B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 2020; 22(2): 225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol 2018; 13(4): 1013–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hao L, Zhong YM, Tan CP, Mao ZW. Quantitative tracking of endoplasmic reticulum viscosity during ferroptosis by an iridium complex via TPPLM. Chem Commun (Camb) 2021; 57(41): 5040–5042

    Article  CAS  PubMed  Google Scholar 

  32. Agmon E, Solon J, Bassereau P, Stockwell BR. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 2018; 8(1): 5155

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, Stroh J, Hailfinger S, von Karstedt S, García-Sáez AJ. Ferroptotic pores induce Ca2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ 2021; 28(5): 1644–1657

    Article  CAS  PubMed  Google Scholar 

  34. Bannai S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 1986; 261(5): 2256–2263

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X, Yan C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ 2020; 27(2): 662–675

    Article  CAS  PubMed  Google Scholar 

  36. Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell 2018; 34(1): 21–43

    Article  CAS  PubMed  Google Scholar 

  37. Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M, Savaskan N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 2017; 6(8): e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao JY, Poddar A, Magtanong L, Lumb JH, Mileur TR, Reid MA, Dovey CM, Wang J, Locasale JW, Stone E, Cole SPC, Carette JE, Dixon SJ. A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep 2019; 26(6): 1544–1556.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, Zhang S, Wen Z, Dong S, Rao J, Liao W, Shi M. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 2017; 19(12): 1022–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N, Stone E, Harris IS, DeNicola GM. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 2021; 33(1): 174–189.e7

    Article  CAS  PubMed  Google Scholar 

  41. Fang X, Zhang J, Li Y, Song Y, Yu Y, Cai Z, Lian F, Yang J, Min J, Wang F. Malic enzyme 1 as a novel anti-ferroptotic regulator in hepatic ischemia/reperfusion injury. Adv Sci (Weinh) 2023; [Epub ahead of print] doi:https://doi.org/10.1002/advs.202205436

  42. Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, Brown LM, Valenzuela CA, Wolpaw AJ, Stockwell BR. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 2016; 12(7): 497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H, Yuan J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci U S A 2019; 116(8): 2996–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, Henkelmann B, Yamada KI, Wanninger J, Zilka O, Sato E, Feederle R, Hass D, Maida A, Mourão ASD, Linkermann A, Geissler EK, Nakagawa K, Abe T, Fedorova M, Proneth B, Pratt DA, Conrad M. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 2022; 608(7924): 778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, Bassik MC, Nomura DK, Dixon SJ, Olzmann JA. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019; 575(7784): 688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O’Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019; 575(7784): 693–698

    Article  CAS  PubMed  Google Scholar 

  47. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, Poyurovsky MV, Olszewski K, Gan B. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021; 593(7860): 586–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Werner ER, Blau N, Thöny B. Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 2011; 438(3): 397–414

    Article  CAS  PubMed  Google Scholar 

  49. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S, Daniels JD, Schmitt-Kopplin P, Hauck SM, Stockwell BR, Hadian K, Schick JA. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 2020; 6(1): 41–53

    Article  CAS  PubMed  Google Scholar 

  50. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA, Birsoy K. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 2020; 16(12): 1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeitler L, Fiore A, Meyer C, Russier M, Zanella G, Suppmann S, Gargaro M, Sidhu SS, Seshagiri S, Ohnmacht C, Köcher T, Fallarino F, Linkermann A, Murray PJ. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Elife 2021; 10: e64806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, Wang J, Wu Q, Fang X, Duan L, Wang S, Wang K, An P, Shao T, Chung RT, Zheng S, Min J, Wang F. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 2020; 136(6): 726–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017; 168(3): 344–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang F, Tao Y, Zhang Z, Guo X, An P, Shen Y, Wu Q, Yu Y, Wang F. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 2012; 97(12): 1826–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Protchenko O, Baratz E, Jadhav S, Li F, Shakoury-Elizeh M, Gavrilova O, Ghosh MC, Cox JE, Maschek JA, Tyurin VA, Tyurina YY, Bayir H, Aron AT, Chang CJ, Kagan VE, Philpott CC. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 2021; 73(3): 1176–1193

    Article  CAS  PubMed  Google Scholar 

  56. Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab 2005; 1(3): 191–200

    Article  CAS  PubMed  Google Scholar 

  57. Jiang L, Wang J, Wang K, Wang H, Wu Q, Yang C, Yu Y, Ni P, Zhong Y, Song Z, Xie E, Hu R, Min J, Wang F. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021; 138(8): 689–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Z, Zhang F, An P, Guo X, Shen Y, Tao Y, Wu Q, Zhang Y, Yu Y, Ning B, Nie G, Knutson MD, Anderson GJ, Wang F. Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood 2011; 118(7): 1912–1922

    Article  CAS  PubMed  Google Scholar 

  59. Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, Leng K, Nalls MA, Singleton AB, Xu K, Faghri F, Kampmann M. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 2021; 24(7): 1020–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, Upadhyayula PS, Canoll P, Uchida K, Soni RK, Hadian K, Stockwell BR. Transferrin receptor is a specific ferroptosis marker. Cell Rep 2020; 30(10): 3411–3423.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 2009; 29(4): 1007–1016

    Article  CAS  PubMed  Google Scholar 

  62. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH. Mitoferrin is essential for erythroid iron assimilation. Nature 2006; 440(7080): 96–100

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Z, Guo M, Shen M, Kong D, Zhang F, Shao J, Tan S, Wang S, Chen A, Cao P, Zheng S. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol 2020; 36: 101619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 2015; 6(27): 24393–24403

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC. Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett 2018; 416: 124–137

    Article  CAS  PubMed  Google Scholar 

  66. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, Cheng Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116(7): 2672–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, Agarwal A. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol 2018; 314(5): F702–F714

    Article  CAS  PubMed  Google Scholar 

  68. Wang YQ, Chang SY, Wu Q, Gou YJ, Jia L, Cui YM, Yu P, Shi ZH, Wu WS, Gao G, Chang YZ. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front Aging Neurosci 2016; 8: 308

    Article  PubMed  PubMed Central  Google Scholar 

  69. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K, Possemato R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017; 551(7682): 639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 2016; 478(2): 838–844

    Article  CAS  PubMed  Google Scholar 

  71. Kim EH, Shin D, Lee J, Jung AR, Roh JL. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett 2018; 432: 180–190

    Article  CAS  PubMed  Google Scholar 

  72. Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci 2018; 4(3): 387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A 2016; 113(34): E4966–E4975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, Tyurin VA, Anthonymuthu TS, Kapralov AA, Amoscato AA, Mikulska-Ruminska K, Shrivastava IH, Kenny EM, Yang Q, Rosenbaum JC, Sparvero LJ, Emlet DR, Wen X, Minami Y, Qu F, Watkins SC, Holman TR, VanDemark AP, Kellum JA, Bahar I, Bayir H, Kagan VE. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017; 171(3): 628–641.e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O, Gu W. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 2019; 21(5): 579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG, Schreiber SL. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 2020; 16(3): 302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 2022; 22(7): 381–396

    Article  CAS  PubMed  Google Scholar 

  78. Tan SK, Mahmud I, Fontanesi F, Puchowicz M, Neumann CKA, Griswold AJ, Patel R, Dispagna M, Ahmed HH, Gonzalgo ML, Brown JM, Garrett TJ, Welford SM. Obesity-dependent adipokine chemerin suppresses fatty acid oxidation to confer ferroptosis resistance. Cancer Discov 2021; 11(8): 2072–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun WY, Tyurin VA, Mikulska-Ruminska K, Shrivastava IH, Anthonymuthu TS, Zhai YJ, Pan MH, Gong HB, Lu DH, Sun J, Duan WJ, Korolev S, Abramov AY, Angelova PR, Miller I, Beharier O, Mao GW, Dar HH, Kapralov AA, Amoscato AA, Hastings TG, Greenamyre TJ, Chu CT, Sadovsky Y, Bahar I, Bayir H, Tyurina YY, He RR, Kagan VE. Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol 2021; 17(4): 465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY, McDonnell DP. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun 2021; 12(1): 5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 2018; 38(1): 12

    Article  PubMed  Google Scholar 

  82. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021; 12(8): 599–620

    Article  CAS  PubMed  Google Scholar 

  83. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 2019;23:101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 2020; 27(4): 436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, Sirohi K, Li X, Wei Y, Lee H, Zhuang L, Chen G, Xiao ZD, Hung MC, Chen J, Huang P, Li W, Gan B. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018; 20(10): 1181–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu K, Li K, Lv J, Feng J, Chen J, Wu H, Cheng F, Jiang W, Wang J, Pei H, Chiao PJ, Cai Z, Chen Y, Liu M, Pang X. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 2020; 130(4): 1752–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lim JKM, Delaidelli A, Minaker SW, Zhang HF, Colovic M, Yang H, Negri GL, von Karstedt S, Lockwood WW, Schaffer P, Leprivier G, Sorensen PH. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci U S A 2019; 116(19): 9433–9442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann N Y Acad Sci 2016; 1368(1): 149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Du J, Zhou Y, Li Y, Xia J, Chen Y, Chen S, Wang X, Sun W, Wang T, Ren X, Wang X, An Y, Lu K, Hu W, Huang S, Li J, Tong X, Wang Y. Identification of frataxin as a regulator of ferroptosis. Redox Biol 2020; 32: 101483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 2022; 21(1): 47

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tang X, Ding H, Liang M, Chen X, Yan Y, Wan N, Chen Q, Zhang J, Cao J. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer 2021; 12(8): 1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tian X, Li S, Ge G. Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res 2021; 13: 1333–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ndiaye H, Liu JY, Hall A, Minogue S, Morgan MY, Waugh MG. Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases. Biosci Rep 2020; 40(4): BSR20200219

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 2016; 478(3): 1338–1343

    Article  CAS  PubMed  Google Scholar 

  95. Ye Z, Hu Q, Zhuo Q, Zhu Y, Fan G, Liu M, Sun Q, Zhang Z, Liu W, Xu W, Ji S, Yu X, Xu X, Qin Y. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. Am J Cancer Res 2020; 10(4): 1182–1193

    PubMed  PubMed Central  Google Scholar 

  96. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, Wang X, Zhang L, Li H, Yang Y, Ji Z, Wang H, Ying G, Ba Y. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 2020; 19(1): 43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kuang F, Liu J, Xie Y, Tang D, Kang R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol 2021; 28(6): 765–775.e5

    Article  CAS  PubMed  Google Scholar 

  98. Zhou W, Zhang J, Yan M, Wu J, Lian S, Sun K, Li B, Ma J, Xia J, Lian C. Orlistat induces ferroptosis-like cell death of lung cancer cells. Front Med 2021; 15(6): 922–932

    Article  PubMed  Google Scholar 

  99. Yang C, Zhang Y, Lin S, Liu Y, Li W. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging (Albany NY) 2021; 13(10): 13515–13534

    Article  CAS  PubMed  Google Scholar 

  100. Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, Tang Y, Zhao L, Pan M. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia 2021; 23(12): 1227–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fu D, Wang C, Yu L, Yu R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell Mol Biol Lett 2021; 26(1): 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cai S, Fu S, Zhang W, Yuan X, Cheng Y, Fang J. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer. Biochem Biophys Res Commun 2021; 577: 158–164

    Article  CAS  PubMed  Google Scholar 

  103. Feng CZ, Li NZ, Hu XB, Xie YY, Huang QH, Zhang J, Chen Z, Chen SJ, Wang F, Sun XJ. The LIFR-targeting small molecules EC330/EC359 are potent ferroptosis inducers. Genes Dis 2022; [Epub ahead of print] doi:https://doi.org/10.1016/j.gendis.2022.10.016

  104. Wang K, Zhang Z, Tsai HI, Liu Y, Gao J, Wang M, Song L, Cao X, Xu Z, Chen H, Gong A, Wang D, Cheng F, Zhu H. Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ 2021; 28(4): 1222–1236

    Article  CAS  PubMed  Google Scholar 

  105. Chaudhary N, Choudhary BS, Shah SG, Khapare N, Dwivedi N, Gaikwad A, Joshi N, Raichanna J, Basu S, Gurjar M, P K S, Saklani A, Gera P, Ramadwar M, Patil P, Thorat R, Gota V, Dhar SK, Gupta S, Das M, Dalal SN. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer 2021; 149(7): 1495–1511

    Article  CAS  PubMed  Google Scholar 

  106. Shang Y, Luo M, Yao F, Wang S, Yuan Z, Yang Y. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal 2020; 72: 109633

    Article  CAS  PubMed  Google Scholar 

  107. Bai T, Wang S, Zhao Y, Zhu R, Wang W, Sun Y. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2017; 491(4): 919–925

    Article  CAS  PubMed  Google Scholar 

  108. Turcu AL, Versini A, Khene N, Gaillet C, Cañeque T, Müller S, Rodriguez R. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation. Chemistry 2020; 26(33): 7369–7373

    Article  CAS  PubMed  Google Scholar 

  109. Cao X, Li Y, Wang Y, Yu T, Zhu C, Zhang X, Guan J. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One 2022; 17(1): e0261370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, Zhou C, Jing Q, Yang C, Wang L, Li H, Fang L, Zhou Y, Tong X, Wang Y. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 2021; 12(7): 705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Song Z, Xiang X, Li J, Deng J, Fang Z, Zhang L, Xiong J. Ruscogenin induces ferroptosis in pancreatic cancer cells. Oncol Rep 2020; 43(2): 516–524

    CAS  PubMed  Google Scholar 

  112. Wang HT, Ju J, Wang SC, Zhang YH, Liu CY, Wang T, Yu X, Wang F, Cheng XR, Wang K, Chen ZY. Insights into ferroptosis, a novel target for the therapy of cancer. Front Oncol 2022; 12: 812534

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021; 12(11): 836–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu S, Min J, Wang F. Ferroptosis: an emerging player in immune cells. Sci Bull (Beijing) 2021; 66(22): 2257–2260

    Article  CAS  PubMed  Google Scholar 

  115. Mu Q, Chen L, Gao X, Shen S, Sheng W, Min J, Wang F. The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Sci Bull (Beijing) 2021; 66(17): 1806–1816

    Article  CAS  PubMed  Google Scholar 

  116. Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 2017; 12: 8–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID, Moon JS. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol 2021; 41: 101947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang L, McClatchy DB, Maher P, Liang Z, Diedrich JK, Soriano-Castell D, Goldberg J, Shokhirev M, Yates JR3rd, Schubert D, Currais A. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death Dis 2020; 11(10): 828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ayton S, Portbury S, Kalinowski P, Agarwal P, Diouf I, Schneider JA, Morris MC, Bush AI. Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimers Dement 2021; 17(7): 1244–1256

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, Han ZT, Zhang HH, Wang WX, Nelson PT, Chen JG, Lu Y, Man HY, Liu D, Zhu LQ. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 2021; 28(5): 1548–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu ZY, Liu YD, Gong Y, Jin W, Topchiy E, Turdi S, Gao YF, Culver B, Wang SY, Ge W, Zha WL, Ren J, Pei ZH, Qin X. Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer’s disease via inhibition of ACSL4-dependent ferroptosis. Acta Pharmacol Sin 2022; 43(1): 39–49

    Article  CAS  PubMed  Google Scholar 

  122. Gao Y, Li J, Wu Q, Wang S, Yang S, Li X, Chen N, Li L, Zhang L. Tetrahydroxy stilbene glycoside ameliorates Alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int Immunopharmacol 2021; 99: 108002

    Article  CAS  PubMed  Google Scholar 

  123. Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, Wang D. Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci 2022; 18(5): 2075–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li L, Li WJ, Zheng XR, Liu QL, Du Q, Lai YJ, Liu SQ. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol Med 2022; 28(1): 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Belaidi AA, Masaldan S, Southon A, Kalinowski P, Acevedo K, Appukuttan AT, Portbury S, Lei P, Agarwal P, Leurgans SE, Schneider J, Conrad M, Bush AI, Ayton S. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol Psychiatry 2022; [Epub ahead of print] doi:https://doi.org/10.1038/s41380-022-01568-w

  126. Zhang YH, Wang DW, Xu SF, Zhang S, Fan YG, Yang YY, Guo SQ, Wang S, Guo T, Wang ZY, Guo C. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol 2018; 14: 535–548

    Article  CAS  PubMed  Google Scholar 

  127. Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Prog Neurobiol 2021; 196:101890

    Article  PubMed  Google Scholar 

  128. Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, De S, Rodrigues M, Yapom R, Little D, Dolt KS, Kunath T, Devine MJ, Gissen P, Shchepinov MS, Sylantyev S, Pavlov EV, Klenerman D, Abramov AY, Gandhi S. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 2020; 27(10): 2781–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vallerga CL, Zhang F, Fowdar J, McRae AF, Qi T, Nabais MF, Zhang Q, Kassam I, Henders AK, Wallace L, Montgomery G, Chuang YH, Horvath S, Ritz B, Halliday G, Hickie I, Kwok JB, Pearson J, Pitcher T, Kennedy M, Bentley SR, Silburn PA, Yang J, Wray NR, Lewis SJG, Anderson T, Dalrymple-Alford J, Mellick GD, Visscher PM, Gratten J. Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson’s disease. Nat Commun 2020; 11(1): 1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Asanuma M, Miyazaki I. Glutathione and related molecules in Parkinsonism. Int J Mol Sci 2021; 22(16): 8689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tian Y, Lu J, Hao X, Li H, Zhang G, Liu X, Li X, Zhao C, Kuang W, Chen D, Zhu M. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 2020; 17(4): 1796–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bai L, Yan F, Deng R, Gu R, Zhang X, Bai J. Thioredoxin-1 rescues MPP+/MPTP-induced ferroptosis by increasing glutathione peroxidase 4. Mol Neurobiol 2021; 58(7): 3187–3197

    Article  CAS  PubMed  Google Scholar 

  133. Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garçon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonnière B, Strubi-Vuillaume I, Zahr N, Destée A, Corvol JC, Pöltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014; 21(2): 195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shi L, Huang C, Luo Q, Xia Y, Liu W, Zeng W, Cheng A, Shi R, Zhengli C. Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson’s disease through AKT/mTOR pathway. Aging (Albany NY) 2020; 12(10): 9515–9533

    Article  CAS  PubMed  Google Scholar 

  135. Huang Z, Si W, Li X, Ye S, Liu X, Ji Y, Hao X, Chen D, Zhu M. Moxibustion protects dopaminergic neurons in Parkinson’s disease through antiferroptosis. Evid Based Complement Alternat Med 2021; 2021: 6668249

    PubMed  PubMed Central  Google Scholar 

  136. Lu J, Liu X, Tian Y, Li H, Ren Z, Liang S, Zhang G, Zhao C, Li X, Wang T, Chen D, Kuang W, Zhu M. Moxibustion exerts a neuroprotective effect through antiferroptosis in Parkinson’s disease. Evid Based Complement Alternat Med 2019; 2019: 2735492

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brocardo PS, McGinnis E, Christie BR, Gil-Mohapel J. Time-course analysis of protein and lipid oxidation in the brains of Yac128 Huntington’s disease transgenic mice. Rejuvenation Res 2016; 19(2): 140–148

    Article  CAS  PubMed  Google Scholar 

  138. Hatami A, Zhu C, Relaño-Gines A, Elias C, Galstyan A, Jun M, Milne G, Cantor CR, Chesselet MF, Shchepinov MS. Deuterium-reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington’s disease. FEBS J 2018; 285(16): 3002–3012

    Article  CAS  PubMed  Google Scholar 

  139. Ribeiro M, Rosenstock TR, Cunha-Oliveira T, Ferreira IL, Oliveira CR, Rego AC. Glutathione redox cycle dysregulation in Huntington’s disease knock-in striatal cells. Free Radic Biol Med 2012; 53(10): 1857–1867

    Article  CAS  PubMed  Google Scholar 

  140. Domínguez JF, Ng AC, Poudel G, Stout JC, Churchyard A, Chua P, Egan GF, Georgiou-Karistianis N. Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study. J Neurol Neurosurg Psychiatry 2016; 87(5): 545–549

    Article  PubMed  Google Scholar 

  141. Tan Q, Fang Y, Gu Q. Mechanisms of modulation of ferroptosis and its role in central nervous system diseases. Front Pharmacol 2021; 12: 657033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, Volitakis I, Bush AI, Hersch S, Fox JH. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 2013; 8(10): e77023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 2014; 136(12): 4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and mechanism of ferroptosis in neurological diseases. Mol Metab 2022; 61: 101502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, Wang Q, Crouch PJ, Ganio K, Wang XC, Pei L, Adlard PA, Lu YM, Cappai R, Wang JZ, Liu R, Bush AI. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 2017; 22(11): 1520–1530

    Article  CAS  PubMed  Google Scholar 

  146. Tuo QZ, Masaldan S, Southon A, Mawal C, Ayton S, Bush AI, Lei P, Belaidi AA. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics 2021; 18(4): 2682–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tuo QZ, Liu Y, Xiang Z, Yan HF, Zou T, Shu Y, Ding XL, Zou JJ, Xu S, Tang F, Gong YQ, Li XL, Guo YJ, Zheng ZY, Deng AP, Yang ZZ, Li WJ, Zhang ST, Ayton S, Bush AI, Xu H, Dai L, Dong B, Lei P. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 2022; 7(1): 59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med 2011; 17(11): 1391–1401

    Article  CAS  PubMed  Google Scholar 

  149. Tang LJ, Luo XJ, Tu H, Chen H, Xiong XM, Li NS, Peng J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(2): 401–410

    Article  CAS  PubMed  Google Scholar 

  150. Lucas DT, Szweda LI. Cardiac reperfusion injury: aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci U S A 1998; 95(2): 510–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ganguly R, Hasanally D, Stamenkovic A, Maddaford TG, Chaudhary R, Pierce GN, Ravandi A. Alpha linolenic acid decreases apoptosis and oxidized phospholipids in cardiomyocytes during ischemia/reperfusion. Mol Cell Biochem 2018; 437(1–2): 163–175

    Article  CAS  PubMed  Google Scholar 

  152. Yeang C, Hasanally D, Que X, Hung MY, Stamenkovic A, Chan D, Chaudhary R, Margulets V, Edel AL, Hoshijima M, Gu Y, Bradford W, Dalton N, Miu P, Cheung DY, Jassal DS, Pierce GN, Peterson KL, Kirshenbaum LA, Witztum JL, Tsimikas S, Ravandi A. Reduction of myocardial ischaemia-reperfusion injury by inactivating oxidized phospholipids. Cardiovasc Res 2019; 115(1): 179–189

    Article  CAS  PubMed  Google Scholar 

  153. Stamenkovic A, O’Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P, Aliani M, Pierce GN, Ravandi A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2021; 320(3): H1170–H1184

    Article  CAS  PubMed  Google Scholar 

  154. Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 2019; 10(11): 822

    Article  PubMed  PubMed Central  Google Scholar 

  155. Liu H, Mo H, Yang C, Mei X, Song X, Lu W, Xiao H, Yan J, Wang X, Yan J, Luo T, Lin Y, Wen D, Chen G, Chen A, Ling Y. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 2022; 189: 122–135

    Article  CAS  PubMed  Google Scholar 

  156. Tang LJ, Zhou YJ, Xiong XM, Li NS, Zhang JJ, Luo XJ, Peng J. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med 2021; 162: 339–352

    Article  CAS  PubMed  Google Scholar 

  157. Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, Matsushima S, Koumura T, Yamada KI, Imai H, Tsutsui H. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci 2022; 7(8): 800–819

    Article  PubMed  PubMed Central  Google Scholar 

  158. Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N, Bopassa JC. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun 2019; 520(3): 606–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, Qian X, Zhao Y, Qian J. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother 2022; 154: 113572

    Article  CAS  PubMed  Google Scholar 

  160. Ma S, Sun L, Wu W, Wu J, Sun Z, Ren J. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol 2020; 11: 551318

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 2015; 59(2): 298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SV, Ardehali H. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 2016; 8(3): 247–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2012; 303(1): H75–H85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H, Matsui T. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2018; 314(3): H659–H668

    Article  PubMed  Google Scholar 

  165. He P, Zhang M, Zhao M, Zhang M, Ma B, Lv H, Han Y, Wu D, Zhong Z, Zhao W. A novel polysaccharide from Chuanminshen violaceum and its protective effect against myocardial injury. Front Nutr 2022; 9: 961182

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mei SL, Xia ZY, Qiu Z, Jia YF, Zhou JJ, Zhou B. Shenmai Injection attenuates myocardial ischemia/reperfusion injury by targeting Nrf2/GPX4 signalling-mediated ferroptosis. Chin J Integr Med 2022; 28(11): 983–991

    Article  CAS  PubMed  Google Scholar 

  167. Fan Z, Cai L, Wang S, Wang J, Chen B. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol 2021; 12: 628988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lu H, Xiao H, Dai M, Xue Y, Zhao R. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol 2022; 60(1): 38–45

    Article  CAS  PubMed  Google Scholar 

  169. Lin JH, Yang KT, Lee WS, Ting PC, Luo YP, Lin DJ, Wang YS, Chang JC. Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev 2022; 2022: 9523491

    Article  PubMed  PubMed Central  Google Scholar 

  170. Xu S, Wu B, Zhong B, Lin L, Ding Y, Jin X, Huang Z, Lin M, Wu H, Xu D. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered 2021; 12(2): 10924–10934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li T, Tan Y, Ouyang S, He J, Liu L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 2022; 808: 145968

    Article  CAS  PubMed  Google Scholar 

  172. Shan X, Lv ZY, Yin MJ, Chen J, Wang J, Wu QN. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev 2021; 2021: 8880141

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sun W, Wu X, Yu P, Zhang Q, Shen L, Chen J, Tong H, Fan M, Shi H, Chen X. LncAABR07025387.1 enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis. Front Cell Dev Biol 2022; 10: 672391

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sun W, Shi R, Guo J, Wang H, Shen L, Shi H, Yu P, Chen X. miR-135b-3p promotes cardiomyocyte ferroptosis by targeting GPX4 and aggravates myocardial ischemia/reperfusion injury. Front Cardiovasc Med 2021; 8: 663832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang JK, Zhang Z, Guo ZA, Fu Y, Chen XJ, Chen WJ, Wu HF, Cui XJ. The BMSC-derived exosomal lncRNA Mir9-3hg suppresses cardiomyocyte ferroptosis in ischemia-reperfusion mice via the Pum2/PRDX6 axis. Nutr Metab Cardiovasc Dis 2022; 32(2): 515–527

    Article  CAS  PubMed  Google Scholar 

  176. Miller PE, van Diepen S, Ahmad T. Acute decompensated heart failure complicated by respiratory failure. Circ Heart Fail 2019; 12(5): e006013

    Article  PubMed  Google Scholar 

  177. Yang X, Kawasaki NK, Min J, Matsui T, Wang F. Ferroptosis in heart failure. J Mol Cell Cardiol 2022; 173: 141–153

    Article  CAS  PubMed  Google Scholar 

  178. Chen X, Xu S, Zhao C, Liu B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 2019; 516(1): 37–43

    Article  CAS  PubMed  Google Scholar 

  179. Panjrath GS, Patel V, Valdiviezo CI, Narula N, Narula J, Jain D. Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model. J Am Coll Cardiol 2007; 49(25): 2457–2464

    Article  CAS  PubMed  Google Scholar 

  180. Miranda CJ, Makui H, Soares RJ, Bilodeau M, Mui J, Vali H, Bertrand R, Andrews NC, Santos MM. Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood 2003; 102(7): 2574–2580

    Article  CAS  PubMed  Google Scholar 

  181. Zheng H, Shi L, Tong C, Liu Y, Hou M. circSnx12 is involved in ferroptosis during heart failure by targeting miR-224-5p. Front Cardiovasc Med 2021; 8: 656093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, An P, Huang S, Pan J, Chen HZ, Chen J, Linkermann A, Min J, Wang F. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 2020; 127(4): 486–501

    Article  CAS  PubMed  Google Scholar 

  183. Bai YT, Chang R, Wang H, Xiao FJ, Ge RL, Wang LS. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem Biophys Res Commun 2018; 499(1): 44–51

    Article  CAS  PubMed  Google Scholar 

  184. Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 2018; 497(1): 233–240

    Article  CAS  PubMed  Google Scholar 

  185. Ma S, He LL, Zhang GR, Zuo QJ, Wang ZL, Zhai JL, Zhang TT, Wang Y, Ma HJ, Guo YF. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(8): 945–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhou Y, Zhou H, Hua L, Hou C, Jia Q, Chen J, Zhang S, Wang Y, He S, Jia E. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med 2021; 171: 55–68

    Article  CAS  PubMed  Google Scholar 

  187. Yang K, Song H, Yin D. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol 2021; 77(6): 767–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Meng Z, Liang H, Zhao J, Gao J, Liu C, Ma X, Liu J, Liang B, Jiao X, Cao J, Wang Y. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci 2021; 284: 119935

    Article  CAS  PubMed  Google Scholar 

  189. Cai J, Zhang M, Liu Y, Li H, Shang L, Xu T, Chen Z, Wang F, Qiao T, Li K. Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci 2020; 10(1): 137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bai T, Li M, Liu Y, Qiao Z, Wang Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 2020; 160: 92–102

    Article  CAS  PubMed  Google Scholar 

  191. Ma TL, Zhou Y, Wang C, Wang L, Chen JX, Yang HH, Zhang CY, Zhou Y, Guan CX. Targeting ferroptosis for lung diseases: exploring novel strategies in ferroptosis-associated mechanisms. Oxid Med Cell Longev 2021; 2021: 1098970

    Article  PubMed  PubMed Central  Google Scholar 

  192. Xu Y, Li X, Cheng Y, Yang M, Wang R. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J 2020; 34(12): 16262–16275

    Article  CAS  PubMed  Google Scholar 

  193. Dong H, Qiang Z, Chai D, Peng J, Xia Y, Hu R, Jiang H. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY) 2020; 12(13): 12943–12959

    Article  CAS  PubMed  Google Scholar 

  194. Qiang Z, Dong H, Xia Y, Chai D, Hu R, Jiang H. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11. Oxid Med Cell Longev 2020; 2020: 5146982

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhou H, Li F, Niu JY, Zhong WY, Tang MY, Lin D, Cui HH, Huang XH, Chen YY, Wang HY, Tu YS. Ferroptosis was involved in the oleic acid-induced acute lung injury in mice. Acta Physiologica Sinica (Sheng Li Xue Bao) 2019; 71(5): 689–697 (in Chinese)

    PubMed  Google Scholar 

  196. Liu P, Feng Y, Li H, Chen X, Wang G, Xu S, Li Y, Zhao L. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25(1): 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H, Zhang X. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 2020; 27(9): 2635–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Li J, Lu K, Sun F, Tan S, Zhang X, Sheng W, Hao W, Liu M, Lv W, Han W. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J Transl Med 2021; 19(1): 96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Qiu YB, Wan BB, Liu G, Wu YX, Chen D, Lu MD, Chen JL, Yu RQ, Chen DZ, Pang QF. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis. Respir Res 2020; 21(1): 232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet 2017; 389(10082): 1931–1940

    Article  PubMed  Google Scholar 

  201. Park EJ, Park YJ, Lee SJ, Lee K, Yoon C. Whole cigarette smoke condensates induce ferroptosis in human bronchial epithelial cells. Toxicol Lett 2019; 303: 55–66

    Article  CAS  PubMed  Google Scholar 

  202. Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, Hosaka Y, Ichikawa A, Saito N, Kadota T, Sato N, Kurita Y, Kobayashi K, Ito S, Utsumi H, Wakui H, Numata T, Kaneko Y, Mori S, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Iwamoto T, Imai H, Kuwano K. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun 2019; 10(1): 3145

    Article  PubMed  PubMed Central  Google Scholar 

  203. Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut 2019; 254(Pt A): 112937

    Article  CAS  PubMed  Google Scholar 

  204. Meyer KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med 2017; 11(5): 343–359

    CAS  PubMed  Google Scholar 

  205. Zanoni M, Cortesi M, Zamagni A, Tesei A. The role of mesenchymal stem cells in radiation-induced lung fibrosis. Int J Mol Sci 2019; 20(16): 3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Li X, Duan L, Yuan S, Zhuang X, Qiao T, He J. Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm (Lond) 2019; 16(1): 11

    Article  CAS  PubMed  Google Scholar 

  207. Gong Y, Wang N, Liu N, Dong H. Lipid peroxidation and GPX4 inhibition are common causes for myofibroblast differentiation and ferroptosis. DNA Cell Biol 2019; 38(7): 725–733

    Article  CAS  PubMed  Google Scholar 

  208. Rashidipour N, Karami-Mohajeri S, Mandegary A, Mohammadinejad R, Wong A, Mohit M, Salehi J, Ashrafizadeh M, Najafi A, Abiri A. Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies. Toxicology 2020; 433–434: 152407

    Article  PubMed  Google Scholar 

  209. Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med 2017; 111: 173–185

    Article  CAS  PubMed  Google Scholar 

  210. Ota T. Molecular mechanisms of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). Adv Exp Med Biol 2021; 1261: 223–229

    Article  CAS  PubMed  Google Scholar 

  211. Videla LA, Valenzuela R. Perspectives in liver redox imbalance: toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48(2): 400–415

    Article  CAS  PubMed  Google Scholar 

  212. Tsurusaki S, Tsuchiya Y, Koumura T, Nakasone M, Sakamoto T, Matsuoka M, Imai H, Yuet-Yin Kok C, Okochi H, Nakano H, Miyajima A, Tanaka M. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis 2019; 10(6): 449

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wei S, Qiu T, Wang N, Yao X, Jiang L, Jia X, Tao Y, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Ferroptosis mediated by the interaction between Mfn2 and IREα promotes arsenic-induced nonalcoholic steatohepatitis. Environ Res 2020; 188: 109824

    Article  CAS  PubMed  Google Scholar 

  214. Zhang XJ, Ji YX, Cheng X, Cheng Y, Yang H, Wang J, Zhao LP, Huang YP, Sun D, Xiang H, Shen LJ, Li PL, Ma JP, Tian RF, Yang J, Yao X, Xu H, Liao R, Xiao L, Zhang P, Zhang X, Zhao GN, Wang X, Hu ML, Tian S, Wan J, Cai J, Ma X, Xu Q, Wang Y, Touyz RM, Liu PP, Loomba R, She ZG, Li H. A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med 2021; 13(624): eabg8116

    Article  CAS  PubMed  Google Scholar 

  215. Li X, Wang TX, Huang X, Li Y, Sun T, Zang S, Guan KL, Xiong Y, Liu J, Yuan HX. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 2020; 40(6): 1378–1394

    Article  CAS  PubMed  Google Scholar 

  216. Qi J, Kim JW, Zhou Z, Lim CW, Kim B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am J Pathol 2020; 190(1): 68–81

    Article  CAS  PubMed  Google Scholar 

  217. Zhu Z, Zhang Y, Huang X, Can L, Zhao X, Wang Y, Xue J, Cheng M, Zhu L. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4. Eur J Pharmacol 2021; 908: 174351

    Article  CAS  PubMed  Google Scholar 

  218. Liu B, Yi W, Mao X, Yang L, Rao C. Enoyl coenzyme A hydratase 1 alleviates nonalcoholic steatohepatitis in mice by suppressing hepatic ferroptosis. Am J Physiol Endocrinol Metab 2021; 320(5): E925–E937

    Article  CAS  PubMed  Google Scholar 

  219. Yang Y, Chen J, Gao Q, Shan X, Wang J, Lv Z. Study on the attenuated effect of ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 2020; 445: 152599

    Article  CAS  PubMed  Google Scholar 

  220. Lu D, Xia Q, Yang Z, Gao S, Sun S, Luo X, Li Z, Zhang X, Han S, Li X, Cao M. ENO3 promoted the progression of NASH by negatively regulating ferroptosis via elevation of GPX4 expression and lipid accumulation. Ann Transl Med 2021; 9(8): 661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen J, Li X, Ge C, Min J, Wang F. The multifaceted role of ferroptosis in liver disease. Cell Death Differ 2022; 29(3): 467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Liu CY, Wang M, Yu HM, Han FX, Wu QS, Cai XJ, Kurihara H, Chen YX, Li YF, He RR. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci Biotechnol Biochem 2020; 84(8): 1621–1628

    Article  CAS  PubMed  Google Scholar 

  223. Costa-Matos L, Batista P, Monteiro N, Simöes M, Egas C, Pereira J, Pinho H, Santos N, Ribeiro J, Cipriano MA, Henriques P, Giräo F, Rodrigues A, Carvalho A. Liver hepcidin mRNA expression is inappropriately low in alcoholic patients compared with healthy controls. Eur J Gastroenterol Hepatol 2012; 24(10): 1158–1165

    Article  CAS  PubMed  Google Scholar 

  224. Zhou Z, Ye TJ, Bonavita G, Daniels M, Kainrad N, Jogasuria A, You M. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice. Hepatol Commun 2019; 3(5): 656–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Zhou Z, Ye TJ, DeCaro E, Buehler B, Stahl Z, Bonavita G, Daniels M, You M. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis. Am J Pathol 2020; 190(1): 82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Liu J, He H, Wang J, Guo X, Lin H, Chen H, Jiang C, Chen L, Yao P, Tang Y. Oxidative stress-dependent frataxin inhibition mediated alcoholic hepatocytotoxicity through ferroptosis. Toxicology 2020; 445: 152584

    Article  CAS  PubMed  Google Scholar 

  227. Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: mechanistic and clinical aspects. World J Gastroenterol 2019; 25(5): 521–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Tak J, Kim YS, Kim TH, Park GC, Hwang S, Kim SG. Gα12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation. Theranostics 2022; 12(4): 1570–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Du K, Oh SH, Dutta RK, Sun T, Yang WH, Chi JT, Diehl AM. Inhibiting xCT/SLC7A11 induces ferroptosis of myofibroblastic hepatic stellate cells but exacerbates chronic liver injury. Liver Int 2021; 41(9): 2214–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ho CH, Huang JH, Sun MS, Tzeng IS, Hsu YC, Kuo CY. Wild bitter melon extract regulates LPS-induced hepatic stellate cell activation, inflammation, endoplasmic reticulum stress, and ferroptosis. Evid Based Complement Alternat Med 2021; 2021: 6671129

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wang L, Zhang Z, Li M, Wang F, Jia Y, Zhang F, Shao J, Chen A, Zheng S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life 2019; 71(1): 45–56

    Article  CAS  PubMed  Google Scholar 

  232. Li Y, Jin C, Shen M, Wang Z, Tan S, Chen A, Wang S, Shao J, Zhang F, Zhang Z, Zheng S. Iron regulatory protein 2 is required for artemether-mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med 2020; 160: 845–859

    Article  CAS  PubMed  Google Scholar 

  233. Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 2019; 109: 2043–2053

    Article  CAS  PubMed  Google Scholar 

  234. Zhou X, Fu Y, Liu W, Mu Y, Zhang H, Chen J, Liu P. Ferroptosis in chronic liver diseases: opportunities and challenges. Front Mol Biosci 2022; 9: 928321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Tonnus W, Linkermann A. The in vivo evidence for regulated necrosis. Immunol Rev 2017; 277(1): 128–149

    Article  CAS  PubMed  Google Scholar 

  236. Mata-Miranda MM, Bernal-Barquero CE, Martinez-Cuazitl A, Guerrero-Robles CI, Sanchez-Monroy V, Rojas-Lopez M, Vazquez-Zapien GJ. Nephroprotective effect of embryonic stem cells reducing lipid peroxidation in kidney injury induced by cisplatin. Oxid Med Cell Longev 2019; 2019: 5420624

    Article  PubMed  PubMed Central  Google Scholar 

  237. He S, Li R, Peng Y, Wang Z, Huang J, Meng H, Min J, Wang F, Ma Q. ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle 2022; 13(3): 1717–1730

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wang Y, Zhang M, Bi R, Su Y, Quan F, Lin Y, Yue C, Cui X, Zhao Q, Liu S, Yang Y, Zhang D, Cao Q, Gao X. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 2022; 51: 102262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D. Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Dig Dis Sci 2021; 66(2): 483–492

    Article  CAS  PubMed  Google Scholar 

  240. Ding C, Ding X, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P, Xue W. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis 2020; 11(10): 929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Boerger EAS, Mc Causland FR, Eisenga MF, Singh K, Babitt JL, Kellum JA, Palevsky PM, Christov M, Waikar SS. Iron, hepcidin, and death in human AKI. J Am Soc Nephrol 2019; 30(3): 493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang X, Zheng X, Zhang J, Zhao S, Wang Z, Wang F, Shang W, Barasch J, Qiu A. Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am J Physiol Renal Physiol 2018; 315(4): F1042–F1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhang X, Li X. Abnormal iron and lipid metabolism mediated ferroptosis in kidney diseases and its therapeutic potential. Metabolites 2022; 12(1): 58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, Kang L, Zhao Y, Du L, Zhang M, Gong J, Zhang Z, Zhang Y, Mi X, Yue S, Tan X. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis 2021; 12(1): 65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wang Y, Quan F, Cao Q, Lin Y, Yue C, Bi R, Cui X, Yang H, Yang Y, Birnbaumer L, Li X, Gao X. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J Adv Res 2020; 28: 231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Li D, Liu B, Fan Y, Liu M, Han B, Meng Y, Xu X, Song Z, Liu X, Hao Q, Duan X, Nakai A, Chang Y, Cao P, Tan K. Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis. Br J Pharmacol 2021; 178(5): 1182–1199

    Article  CAS  PubMed  Google Scholar 

  247. Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J, Wang J, Cao K, Zhang W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis 2020; 11(1): 73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017; 389(10075): 1238–1252

    Article  PubMed  Google Scholar 

  249. Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C, Cui X, Yang H, Gao X, Zhang D. Ferroptosis involves in renal tubular cell death in diabetic nephropathy. Eur J Pharmacol 2020; 888: 173574

    Article  CAS  PubMed  Google Scholar 

  250. Kim S, Kang SW, Joo J, Han SH, Shin H, Nam BY, Park J, Yoo TH, Kim G, Lee P, Park JT. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions. Cell Death Dis 2021; 12(2): 160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Wu Y, Zhao Y, Yang HZ, Wang YJ, Chen Y. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep 2021; 41(2): BSR20202924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Li S, Zheng L, Zhang J, Liu X, Wu Z. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med 2021; 162: 435–449

    Article  CAS  PubMed  Google Scholar 

  253. Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic implications of ferroptosis in renal fibrosis. Front Mol Biosci 2022; 9: 890766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Yang L, Guo J, Yu N, Liu Y, Song H, Niu J, Gu Y. Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci 2020; 261: 118487

    Article  CAS  PubMed  Google Scholar 

  255. Zhou L, Xue X, Hou Q, Dai C. Targeting ferroptosis attenuates interstitial inflammation and kidney fibrosis. Kidney Dis (Basel) 2021; 8(1): 57–71

    Article  PubMed  Google Scholar 

  256. Zhang X, Li LX, Ding H, Torres VE, Yu C, Li X. Ferroptosis promotes cyst growth in autosomal dominant polycystic kidney disease mouse models. J Am Soc Nephrol 2021; 32(11): 2759–2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, Calvet JP, Wallace DP, Sharma M. Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight 2021; 6(8): e141299

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, Zhu Y, Yang G, Liu X, Liu S, Sun X. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater 2020; 384: 121390

    Article  CAS  PubMed  Google Scholar 

  259. Li D, Jiang C, Mei G, Zhao Y, Chen L, Liu J, Tang Y, Gao C, Yao P. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 2020; 12(10): 2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Bruni A, Pepper AR, Pawlick RL, Gala-Lopez B, Gamble AF, Kin T, Seeberger K, Korbutt GS, Bornstein SR, Linkermann A, Shapiro AMJ. Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death Dis 2018; 9(6): 595

    Article  PubMed  PubMed Central  Google Scholar 

  261. Wang X, Fang X, Zheng W, Zhou J, Song Z, Xu M, Min J, Wang F. Genetic support of a causal relationship between iron status and type 2 diabetes: a Mendelian randomization study. J Clin Endocrinol Metab 2021; 106(11): e4641–e4651

    Article  PubMed  PubMed Central  Google Scholar 

  262. Zhou Y. The protective effects of cryptochlorogenic acid on β-cells function in diabetes in vivo and vitro via inhibition of ferroptosis. Diabetes Metab Syndr Obes 2020; 13: 1921–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhang X, Jiang L, Chen H, Wei S, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Wang Y, Liu X. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress-related PERK pathway in MIN6 cells. Toxicology 2022; 465: 153048

    Article  CAS  PubMed  Google Scholar 

  264. Kose T, Vera-Aviles M, Sharp PA, Latunde-Dada GO. Curcumin and (−)-epigallocatechin-3-gallate protect murine MIN6 pancreatic beta-cells against iron toxicity and erastin-induced ferroptosis. Pharmaceuticals (Basel) 2019; 12(1): 26

    Article  CAS  PubMed  Google Scholar 

  265. Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res 2021; 2021: 9999612

    Article  PubMed  PubMed Central  Google Scholar 

  266. Killion EA, Reeves AR, El Azzouny MA, Yan QW, Surujon D, Griffin JD, Bowman TA, Wang C, Matthan NR, Klett EL, Kong D, Newman JW, Han X, Lee MJ, Coleman RA, Greenberg AS. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab 2018; 9: 43–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Segrestin B, Moreno-Navarrete JM, Seyssel K, Alligier M, Meugnier E, Nazare JA, Vidal H, Fernandez-Real JM, Laville M. Adipose tissue expansion by overfeeding healthy men alters iron gene expression. J Clin Endocrinol Metab 2019; 104(3): 688–696

    Article  PubMed  Google Scholar 

  268. Ma X, Pham VT, Mori H, MacDougald OA, Shah YM, Bodary PF. Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity. PLoS One 2017; 12(6): e0179889

    Article  PubMed  PubMed Central  Google Scholar 

  269. Yan HF, Liu ZY, Guan ZA, Guo C. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 2018; 7(4): 604–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ma W, Jia L, Xiong Q, Du H. Iron overload protects from obesity by ferroptosis. Foods 2021; 10(8): 1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022; 185(14): 2401–2421

    Article  CAS  PubMed  Google Scholar 

  272. Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. Lancet 2016; 388(10045): 706–716

    Article  CAS  PubMed  Google Scholar 

  273. Wang H, An P, Xie E, Wu Q, Fang X, Gao H, Zhang Z, Li Y, Wang X, Zhang J, Li G, Yang L, Liu W, Min J, Wang F. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 2017; 66(2): 449–465

    Article  CAS  PubMed  Google Scholar 

  274. Yang L, Wang H, Yang X, Wu Q, An P, Jin X, Liu W, Huang X, Li Y, Yan S, Shen S, Liang T, Min J, Wang F. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther 2020; 5(1): 138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Wu A, Feng B, Yu J, Yan L, Che L, Zhuo Y, Luo Y, Yu B, Wu D, Chen D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol 2021; 46: 102131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Palmer WC, Vishnu P, Sanchez W, Aqel B, Riegert-Johnson D, Seaman LAK, Bowman AW, Rivera CE. Diagnosis and management of genetic iron overload disorders. J Gen Intern Med 2018; 33(12): 2230–2236

    Article  PubMed  PubMed Central  Google Scholar 

  277. Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 2023; 20(1): 7–23

    Article  PubMed  Google Scholar 

  278. Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133(1): 51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Saliba A, Taher A. Iron overload in transfusion-dependent thalassemia. Hematology 2015; 20(5): 311–312

    Article  PubMed  Google Scholar 

  280. Pennell DJ, Berdoukas V, Karagiorga M, Ladis V, Piga A, Aessopos A, Gotsis ED, Tanner MA, Smith GC, Westwood MA, Wonke B, Galanello R. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood 2006; 107(9): 3738–3744

    Article  CAS  PubMed  Google Scholar 

  281. Casu C, Nemeth E, Rivella S. Hepcidin agonists as therapeutic tools. Blood 2018; 131(16): 1790–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Chen KN, Guan QW, Yin XX, Wang ZJ, Zhou HH, Mao XY. Ferrostatin-1 obviates seizures and associated cognitive deficits in ferric chloride-induced posttraumatic epilepsy via suppressing ferroptosis. Free Radic Biol Med 2022; 179: 109–118

    Article  CAS  PubMed  Google Scholar 

  283. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271(5254): 1423–1427

    Article  CAS  PubMed  Google Scholar 

  284. Abeti R, Parkinson MH, Hargreaves IP, Angelova PR, Sandi C, Pook MA, Giunti P, Abramov AY. ‘Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia’. Cell Death Dis 2016; 7(5): e2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Gomes CM, Santos R. Neurodegeneration in Friedreich’s ataxia: from defective frataxin to oxidative stress. Oxid Med Cell Longev 2013; 2013: 487534

    Article  PubMed  PubMed Central  Google Scholar 

  286. Petit F, Drecourt A, Dussiot M, Zangarelli C, Hermine O, Munnich A, Rötig A. Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts. Blood 2021; 137(15): 2090–2102

    Article  CAS  PubMed  Google Scholar 

  287. La Rosa P, Petrillo S, Turchi R, Berardinelli F, Schirinzi T, Vasco G, Lettieri-Barbato D, Fiorenza MT, Bertini ES, Aquilano K, Piemonte F. The Nrf2 induction prevents ferroptosis in Friedreich’s ataxia. Redox Biol 2021; 38: 101791

    Article  CAS  PubMed  Google Scholar 

  288. Gao L, Hua W, Tian L, Zhou X, Wang D, Yang Y, Ni G. Molecular mechanism of ferroptosis in orthopedic diseases. Cells 2022; 11(19): 2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697–1707

    Article  PubMed  PubMed Central  Google Scholar 

  290. Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, Wang G, Guo Z, Ye Y, Guo F. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2020; 27: 33–43

    Article  PubMed  PubMed Central  Google Scholar 

  291. Miao Y, Chen Y, Xue F, Liu K, Zhu B, Gao J, Yin J, Zhang C, Li G. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine 2022; 76: 103847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Zhou X, Zheng Y, Sun W, Zhang Z, Liu J, Yang W, Yuan W, Yi Y, Wang J, Liu J. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif 2021; 54(11): e13134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci 2018; 75(14): 2519–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Wang X, Ma H, Sun J, Zheng T, Zhao P, Li H, Yang M. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol Trace Elem Res 2022; 200(1): 298–307

    Article  CAS  PubMed  Google Scholar 

  295. Ma H, Wang X, Zhang W, Li H, Zhao W, Sun J, Yang M. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev 2020; 2020: 9067610

    Article  PubMed  PubMed Central  Google Scholar 

  296. Ni S, Yuan Y, Qian Z, Zhong Z, Lv T, Kuang Y, Yu B. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med 2021; 169: 271–282

    Article  CAS  PubMed  Google Scholar 

  297. Zhang J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: a review of in vivo and in vitro studies. Environ Toxicol Pharmacol 2020; 76: 103358

    Article  CAS  PubMed  Google Scholar 

  298. Lai B, Wu CH, Wu CY, Luo SF, Lai JH. Ferroptosis and autoimmune diseases. Front Immunol 2022; 13: 916664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Mao C, Lei G, Zhuang L, Gan B. Ferroptosis as an important driver of lupus. Protein Cell 2022; 13(5): 313–315

    Article  PubMed  Google Scholar 

  300. Zhang D, Li Y, Du C, Sang L, Liu L, Li Y, Wang F, Fan W, Tang P, Zhang S, Chen D, Wang Y, Wang X, Xie X, Jiang Z, Song Y, Guo R. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med 2022; 20(1): 363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Li P, Jiang M, Li K, Li H, Zhou Y, Xiao X, Xu Y, Krishfield S, Lipsky PE, Tsokos GC, Zhang X. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol 2021; 22(9): 1107–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, Zheng ZH, Fu X, Pei Z, Qin Y, Yang L, Zhao Y, Wang K, Chen R, He Q, Nan G, Jiang X, Chen ZN, Zhu P. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun 2022; 13(1): 676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Ling H, Li M, Yang C, Sun S, Zhang W, Zhao L, Xu N, Zhang J, Shen Y, Zhang X, Liu C, Lu L, Wang J. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatology (Oxford) 2022; 61(11): 4521–4534

    Article  CAS  PubMed  Google Scholar 

  304. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016; 12(1): 49–62

    Article  CAS  PubMed  Google Scholar 

  305. Günther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 2013; 62(7): 1062–1071

    Article  PubMed  Google Scholar 

  306. Mayr L, Grabherr F, Schwärzler J, Reitmeier I, Sommer F, Gehmacher T, Niederreiter L, He GW, Ruder B, Kunz KTR, Tymoszuk P, Hilbe R, Haschka D, Feistritzer C, Gerner RR, Enrich B, Przysiecki N, Seifert M, Keller MA, Oberhuber G, Sprung S, Ran Q, Koch R, Effenberger M, Tancevski I, Zoller H, Moschen AR, Weiss G, Becker C, Rosenstiel P, Kaser A, Tilg H, Adolph TE. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 2020; 11(1): 1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Xu M, Tao J, Yang Y, Tan S, Liu H, Jiang J, Zheng F, Wu B. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis. Cell Death Dis 2020; 11(2): 86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA 2021; 325(8): 765–779

    Article  CAS  PubMed  Google Scholar 

  309. Luoqian J, Yang W, Ding X, Tuo QZ, Xiang Z, Zheng Z, Guo YJ, Li L, Guan P, Ayton S, Dong B, Zhang H, Hu H, Lei P. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell Mol Immunol 2022; 19(8): 913–924

    Article  CAS  PubMed  Google Scholar 

  310. White AR. Ferroptosis drives immune-mediated neurodegeneration in multiple sclerosis. Cell Mol Immunol 2023; 20(1): 112–113

    Article  CAS  PubMed  Google Scholar 

  311. Li X, Chu Y, Ma R, Dou M, Li S, Song Y, Lv Y, Zhu L. Ferroptosis as a mechanism of oligodendrocyte loss and demyelination in experimental autoimmune encephalomyelitis. J Neuroimmunol 2022; 373: 577995

    Article  CAS  PubMed  Google Scholar 

  312. Rayatpour A, Foolad F, Heibatollahi M, Khajeh K, Javan M. Ferroptosis inhibition by deferiprone, attenuates myelin damage and promotes neuroprotection in demyelinated optic nerve. Sci Rep 2022; 12(1): 19630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Jiao L, Li X, Luo Y, Wei J, Ding X, Xiong H, Liu X, Lei P. Iron metabolism mediates microglia susceptibility in ferroptosis. Front Cell Neurosci 2022; 16: 995084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, Lai W, Liu Y, Wang X, Xiao D, Zhou H, Cheng Y, Yu F, Cao Y, Liu S, Yan Q, Tao Y. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics 2017; 7(13): 3293–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Jiang Y, He Y, Liu S, Tao Y. Chromatin remodeling factor lymphoid-specific helicase inhibits ferroptosis through lipid metabolic genes in lung cancer progression. Chin J Cancer 2017; 36(1): 82

    Article  PubMed  PubMed Central  Google Scholar 

  316. Jiang N, Zhang X, Gu X, Li X, Shang L. Progress in understanding the role of lncRNA in programmed cell death. Cell Death Discov 2021; 7(1): 30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Wang M, Mao C, Ouyang L, Liu Y, Lai W, Liu N, Shi Y, Chen L, Xiao D, Yu F, Wang X, Zhou H, Cao Y, Liu S, Yan Q, Tao Y, Zhang B. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ 2019; 26(11): 2329–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Yuan B, Liao F, Shi ZZ, Ren Y, Deng XL, Yang TT, Li DY, Li RF, Pu DD, Wang YJ, Tan Y, Yang Z, Zhang YH. Dihydroar-temisinin inhibits the proliferation, colony formation and induces ferroptosis of lung cancer cells by inhibiting PRIM2/SLC7A11 axis. Onco Targets Ther 2020; 13: 10829–10840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Chen P, Wu Q, Feng J, Yan L, Sun Y, Liu S, Xiang Y, Zhang M, Pan T, Chen X, Duan T, Zhai L, Zhai B, Wang W, Zhang R, Chen B, Han X, Li Y, Chen L, Liu Y, Huang X, Jin T, Zhang W, Luo H, Chen X, Li Y, Li Q, Li G, Zhang Q, Zhuo L, Yang Z, Tang H, Xie T, Ouyang X, Sui X. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther 2020; 5(1): 51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Gai C, Yu M, Li Z, Wang Y, Ding D, Zheng J, Lv S, Zhang W, Li W. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer. J Cell Physiol 2020; 235(4): 3329–3339

    Article  CAS  PubMed  Google Scholar 

  321. Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, Zhang X, Khan NUH, Wang L, Zhou J. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res 2021; 40(1): 206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Sun D, Li YC, Zhang XY. Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front Pharmacol 2021; 12: 681223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Yu H, Yang C, Jian L, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Luo F, Liu S. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep 2019; 42(2): 826–838

    PubMed  Google Scholar 

  324. Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G, Tang F. YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 2021; 13(12): e14351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Kong R, Wang N, Han W, Bao W, Lu J. IFNγ-mediated repression of system xc drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol 2021; 110(2): 301–314

    Article  CAS  PubMed  Google Scholar 

  326. Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol 2020; 235(7–8): 5637–5648

    Article  CAS  PubMed  Google Scholar 

  327. Lee JY, Nam M, Son HY, Hyun K, Jang SY, Kim JW, Kim MW, Jung Y, Jang E, Yoon SJ, Kim J, Kim J, Seo J, Min JK, Oh KJ, Han BS, Kim WK, Bae KH, Song J, Kim J, Huh YM, Hwang GS, Lee EW, Lee SC. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc Natl Acad Sci U S A 2020; 117(51): 32433–32442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Wang C, Shi M, Ji J, Cai Q, Zhao Q, Jiang J, Liu J, Zhang H, Zhu Z, Zhang J. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY) 2020; 12(15): 15374–15391

    Article  CAS  PubMed  Google Scholar 

  329. Zhao L, Peng Y, He S, Li R, Wang Z, Huang J, Lei X, Li G, Ma Q. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer 2021; 24(3): 642–654

    Article  CAS  PubMed  Google Scholar 

  330. Ni H, Ruan G, Sun C, Yang X, Miao Z, Li J, Chen Y, Qin H, Liu Y, Zheng L, Xing Y, Xi T, Li X. Tanshinone IIA inhibits gastric cancer cell stemness through inducing ferroptosis. Environ Toxicol 2022; 37(2): 192–200

    Article  CAS  PubMed  Google Scholar 

  331. Gao Z, Deng G, Li Y, Huang H, Sun X, Shi H, Yao X, Gao L, Ju Y, Luo M. Actinidia chinensis Planch prevents proliferation and migration of gastric cancer associated with apoptosis, ferroptosis activation and mesenchymal phenotype suppression. Biomed Pharmacother 2020; 126: 110092

    Article  CAS  PubMed  Google Scholar 

  332. Xu X, Zhang X, Wei C, Zheng D, Lu X, Yang Y, Luo A, Zhang K, Duan X, Wang Y. Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis. Eur J Pharm Sci 2020; 152: 105450

    Article  CAS  PubMed  Google Scholar 

  333. Xia Y, Liu S, Li C, Ai Z, Shen W, Ren W, Yang X. Discovery of a novel ferroptosis inducer-talaroconvolutin A-killing colorectal cancer cells in vitro and in vivo. Cell Death Dis 2020; 11(11): 988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, Wu G, Zhou G, He S. miR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer. Mol Carcinog 2022; 61(3): 301–310

    Article  CAS  PubMed  Google Scholar 

  335. Wang R, Su Q, Yin H, Wu D, Lv C, Yan Z. Inhibition of SRSF9 enhances the sensitivity of colorectal cancer to erastin-induced ferroptosis by reducing glutathione peroxidase 4 expression. Int J Biochem Cell Biol 2021; 134: 105948

    Article  CAS  PubMed  Google Scholar 

  336. Storz P. KRas, ROS and the initiation of pancreatic cancer. Small GTPases 2017; 8(1): 38–42

    Article  CAS  PubMed  Google Scholar 

  337. Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J, Firl CEM, Decker AR, Sastra SA, Palermo CF, Andrade LR, Sajjakulnukit P, Zhang L, Tolstyka ZP, Hirschhorn T, Lamb C, Liu T, Gu W, Seeley ES, Stone E, Georgiou G, Manor U, Iuga A, Wahl GM, Stockwell BR, Lyssiotis CA, Olive KP. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020; 368(6486): 85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Yamaguchi Y, Kasukabe T, Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int J Oncol 2018; 52(3): 1011–1022

    CAS  PubMed  Google Scholar 

  339. Cui W, Zhang J, Wu D, Zhang J, Zhou H, Rong Y, Liu F, Wei B, Xu X. Ponicidin suppresses pancreatic cancer growth by inducing ferroptosis: insight gained by mass spectrometry-based metabolomics. Phytomedicine 2022; 98: 153943

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive support from the National Natural Science Foundation of China (No. 31930057 to Fudi Wang and No. 31970689 to Junxia Min), the National Key R&D Program (No. 2018YFA0507801 to Junxia Min and No. 2018YFA0507802 to Fudi Wang) and the China Postdoctoral Science Foundation (No. 2022M712733 to Xue Wang). The authors thank Hao Wang (Zhengzhou University School of Public Health, China), Xuexian Fang (Hangzhou Normal University School of Public Health, China), Yingying Yu, Enjun Xie, and Xinquan Yang (Zhejiang University School of Medicine, China) for their contribution to the discussion for this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxia Min or Fudi Wang.

Ethics declarations

Xue Wang, Ye Zhou, Junxia Min, and Fudi Wang declare that they have no conflict of interest. This manuscript is a review article, and it does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhou, Y., Min, J. et al. Zooming in and out of ferroptosis in human disease. Front. Med. 17, 173–206 (2023). https://doi.org/10.1007/s11684-023-0992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-0992-z

Keywords

Navigation