Skip to main content
Log in

Methodological progress in trace amounts of structural water in nominally anhydrous minerals

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In the deep Earth, hydrogen mainly occurs as structural hydroxyl and molecular water in minerals and melts, constituting mobile and immobile aqueous components. Hydrous minerals contain hydrogen which occupies a specific structural position and constitutes an indispensable component of chemical formulae. On the other hand, nominally anhydrous minerals do not contain hydrogen in their chemical formulae, but can host trace amounts of water in structural position and lattice defect. The molecular water may occur in the lattice defect as fluid/melt inclusions in minerals. Even though the water content of nominally anhydrous minerals is very limited generally in the order of ppm (parts per million), they may play a significant role in influencing the physicochemical properties of mineral and rock systems. With the continuous improvement of modern instrumentations, the analytical methodology exhibits trends for higher spatial resolution, lower detection limit and integral multiple methods on the water amount and its isotopic ratio. Among these methods, Fourier transform infrared spectrometry remains the most widely used, while secondary ion mass spectrometry, continuous flow mass spectrometry, elastic recoil detection analysis and Raman spectrometry are promising. This paper provides a brief review on the methodological progress and their applications to the analysis of structural water in nominally anhydrous minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asimow P D, Langmuir C H. 2003. The importance of water to oceanic mantle melting regimes. Nature, 421: 815–820

    Article  Google Scholar 

  • Aubaud C, Bureau H, Raepsaet C, Khodja H, Withers A C, Hirschmann M M, Bell D R. 2009. Calibration of the infrared molar absorption coefficients for H in olivine, clinopyroxene and rhyolitic glass by elastic recoil detection analysis. Chem Geol, 262: 78–86

    Article  Google Scholar 

  • Aubaud C, Hauri E H, Hirschmann M M. 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett, 31: L20611, doi: 10.1029/2004GL021341

    Article  Google Scholar 

  • Aubaud C, Hirschmann M M, Withers A C, Hervig R L. 2008. Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt.% H2O. Contrib Mineral Petrol, 156: 607–625

    Article  Google Scholar 

  • Aubaud C, Withers A C, Hirschmann M M, Guan Y, Leshin L A, Mackwell S J, Bell D R. 2007. Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Miner, 92: 811–828

    Article  Google Scholar 

  • Balan E, Refson K, Blanchard M, Delattre S, Lazzeri M, Ingrin J, Mauri F, Wright K, Winkler B. 2008. Theoretical infrared absorption coefficient of OH groups in minerals. Am Miner, 93: 950–953

    Article  Google Scholar 

  • Barnes J J, Franchi I A, Anand M, Tartèse R, Starkey N A, Koike M, Sano Y, Russell S S. 2013. Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem Geol, 337-338: 48–55

    Article  Google Scholar 

  • Bauer K K, Vennemann T W. 2014). Analytical methods for the measurement of hydrogen isotope composition and water content in clay minerals by TC/EA. Chem Geol, 363: 229–240

    Article  Google Scholar 

  • Bell D R, Ihinger P D. 2000. The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim Cosmochim Acta, 64: 2109–2118

    Article  Google Scholar 

  • Bell D R, Ihinger P D, Rossman G R. 1995. Quantitative analysis of trace OH in garnet and pyroxenes. Am Miner, 80: 465–474

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992a. The distribution of hydroxyl in garnets from the subcontinental mantle of Southern Africa. Contrib Mineral Petrol, 111: 161–178

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992b. Water in the earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397

    Article  Google Scholar 

  • Bell D R, Rossman G R, Moore R O. 2004. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery kimberlite, South Africa. J Petrol, 45: 1539–1564

    Article  Google Scholar 

  • Bell D R, Rossman G R, Maldener J, Endisch D, Rauch F. 2003. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res-Solid Earth, 108: 141–157

    Article  Google Scholar 

  • Beran A. 2006. Water in natural mantle minerals II: Olivine, garnet and accessory minerals. Rev Mineral Geochem, 62: 169–191

    Article  Google Scholar 

  • Bercovici D, Karato S. 2003. Whole-mantle convection and the transition- zone water filter. Nature, 425: 39–44

    Article  Google Scholar 

  • Boyce J W, Eiler J M, Channon M B. 2012. An inversion-based self-calibration for SIMS measurements: Application to H, F, and Cl in apatite. Am Miner, 97: 1116–1128

    Article  Google Scholar 

  • Boyce J W, Liu Y, Rossman G R, Guan Y, Eiler J M, Stolper E M, Taylor L A. 2010. Lunar apatite with terrestrial volatile abundances. Nature, 466: 466–469

    Article  Google Scholar 

  • Bureau H, Trocellier P, Shaw C, Khodja H, Bolfan-Casanova N, Demouchy S. 2003. Determination of the concentration of water dissolved in glasses and minerals using nuclear microprobe. Nucl Instrum Meth B, 210: 449–454

    Article  Google Scholar 

  • Bureau H, Raepsaet C, Khodja H, Carraro A, Aubaud C. 2009. Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA). Geochim Cosmochim Acta, 73: 3311–3322

    Article  Google Scholar 

  • Chen R X, Zheng Y F, Gong B, Zhao Z F, Gao T S, Chen B, Wu Y B. 2007. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen. Geochim Cosmochim Acta, 71: 2299–2325

    Article  Google Scholar 

  • Chen R X, Zheng Y F, Gong B. 2011. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: Constraints on fluid flow during continental subduction-zone metamorphism. Chem Geol, 281: 103–124

    Article  Google Scholar 

  • De Hoog J C M, Hattori K, Jung H. 2014. Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): Evidence for deep subduction of high-field strength and fluid-mobile elements. Contrib Mineral Petrol, 167: 990

    Article  Google Scholar 

  • Demouchy S, Jacobsen S D, Gaillard F, Stern C R. 2006. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34: 429–432

    Article  Google Scholar 

  • Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B. 2006. Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal microRaman spectrometry. Geochim Cosmochim Acta, 70: 2868–2884

    Article  Google Scholar 

  • Dixon J E, Dixon T H, Bell D R, Malservisi R. 2004. Lateral variation in upper mantle viscosity: Role of water. Earth Planet Sci Lett, 222: 451–467

    Article  Google Scholar 

  • Eiler J M, Kitchen N. 2001. Hydrogen-isotope analysis of nanomole (picoliter) quantities of H2O. Geochim Cosmochim Acta, 65: 4467–4479

    Article  Google Scholar 

  • Gaetani G A, O’Leary J A, Koga K T, Hauri E H, Rose-Koga E F, Monteleone B D. 2014. Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib Mineral Petrol, 167: 965

    Article  Google Scholar 

  • Gong B, Zheng Y F, Chen R X. 2007a. An online method combining a thermal conversion elemental analyzer with isotope ratio mass spectrometry for the determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun Mass Spectrom, 21: 1386–1392

    Article  Google Scholar 

  • Gong B, Zheng Y F, Chen R X. 2007b. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Miner, 34: 687–698

    Article  Google Scholar 

  • Gong B, Zheng Y F, Wu Y B, Zhao Z F, Gao T S, Tang J, Chen R X, Fu B, Liu X M. 2007c. Geochronology and stable isotope geochemistry of UHP metamorphic rocks at Taohang in the Sulu Orogen, east-central China. Int Geol Rev, 49: 259–286

    Article  Google Scholar 

  • Gong B, Chen R X, Zheng Y F. 2013. Water contents and hydrogen isotopes in nominally anhydrous minerals from UHP metamorphic rocks in the Dabie-Sulu orogenic belt. Chin Sci Bull, 58: 4384–4389

    Article  Google Scholar 

  • Gose J, Schmaedicke E, Beran A. 2009. Water in enstatite from Mid-Atlantic Ridge peridotite: Evidence for the water content of suboceanic mantle? Geology, 37: 543–546

    Article  Google Scholar 

  • Grant K, Ingrin J, Lorand J P, Dumas P. 2007. Water partitioning between mantle minerals from peridotite xenoliths. Contrib Mineral Petrol, 154: 15–34

    Article  Google Scholar 

  • Greenwood J P, Itoh S, Sakamoto N, Warren P, Taylor L, Yurimoto H. 2011. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat Geosci, 4: 79–82

    Article  Google Scholar 

  • Grove T L, Till C B, Krawczynski M J. 2012. The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Article  Google Scholar 

  • Hauri E. 2002. SIMS analysis of volatiles in silicate glasses, 2. Isotopes and abundances in Hawaiian melt inclusions. Chem Geol, 183: 115–141

    Google Scholar 

  • Hauri E, Wang J H, Dixon J E, King P L, Mandeville C, Newman S. 2002. SIMS analysis of volatiles in silicate glasses, 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol, 183: 99–114

    Google Scholar 

  • Hauri E H, Gaetani G A, Green T H. 2006a. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett, 248: 715–734

    Article  Google Scholar 

  • Hauri E, Shaw A, Wang J, Dixon J, King P, Mandeville C. 2006b. Matrix effects in hydrogen isotope analysis of silicate glasses by SIMS. Chem Geol, 235: 352–365

    Article  Google Scholar 

  • Hauri E H, Weinreich T, Saal A E, Rutherford M C, Van Orman J A. 2011. High pre-eruptive water contents preserved in lunar melt inclusions. Science, 333: 213–215

    Article  Google Scholar 

  • Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93–108

    Article  Google Scholar 

  • Hu S, Lin Y, Zhang J, Hao J, Feng L, Xu L, Yang W, Yang J. 2014. NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: Hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim Cosmochim Acta, 140: 321–333

    Article  Google Scholar 

  • Hu S, Lin Y, Zhang J, Hao J, Yang W, Deng L. 2015. Measurements of water content and D/H ratio in apatite and silicate glasses using a NanoSIMS 50L. J Anal At Spectrom, 30: 967–978

    Article  Google Scholar 

  • Hui H J, Guan Y B, Chen Y, Peslier A H, Zhang Y X, Liu Y, Rossman G R, Eiler J M, Neal C R. 2015. SIMS analysis of water abundance and hydrogen isotope in lunar highland plagioclase. In: 46th Lunar and Planetary Science Conference, March 16–20, 2015 in the Woodlands, Texas. LPI Contribution No. 1832. 1927

    Google Scholar 

  • Johnson E A. 2006. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Rev Mineral Geochem, 62: 117–154

    Article  Google Scholar 

  • Johnson E A, Rossman G R. 2003. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Miner, 88: 901–911

    Article  Google Scholar 

  • Karato S I. 2011. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett, 301: 413–423

    Article  Google Scholar 

  • Katayama I, Nakashima S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. Am Miner, 88: 229–234

    Article  Google Scholar 

  • Katayama I, Nakashima S, Yurimoto H. 2006. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos, 86: 245–259

    Article  Google Scholar 

  • Keppler H, Rauch M. 2000. Water solubility in nominally anhydrous minerals measured by FTIR and 1H MAS NMR: The effect of sample preparation. Phys Chem Miner, 27: 371–376

    Article  Google Scholar 

  • Koch-Muller M, Rhede D. 2010. IR absorption coefficients for water in nominally anhydrous high-pressure minerals. Am Miner, 95: 770–775

    Article  Google Scholar 

  • Koga K, Hauri E, Hirschmann M M, Bell D. 2003). Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst, 4: 1019, doi: 1010.1029/2002GC000378

    Google Scholar 

  • Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the a, ß and phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123: 345–357

    Article  Google Scholar 

  • Kohlstedt D L. 2006. The role of water in high-temperature rock deformation. Rev Mineral Geochem, 62: 377–396

    Article  Google Scholar 

  • Kovacs I, Hermann J, O’Neill H S C, Gerald J F, Sambridge M, Horvath G. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra. Am Miner, 93: 765–778

    Google Scholar 

  • Kovacs I, O’Neill H S C, Hermann J, Hauri E H. 2010. Site-specific infrared O-H absorption coefficients for water substitution into olivine. Am Miner, 95: 292–299

    Article  Google Scholar 

  • Libowitzky E, Beran A. 2006. The structure of hydrous species in nominally anhydrous minerals: Information from polarized IR spectroscopy. Rev Mineral Geochem, 62: 29–52

    Article  Google Scholar 

  • Libowitzky E, Rossman G R. 1996. Principles of quantitative absorbance measurements in anisotropic crystals. Phys Chem Miner, 23: 319–327

    Article  Google Scholar 

  • Libowitzky E, Rossman G R. 1997. An IR absorption calibration for water in minerals. Am Miner, 82: 1111–1115

    Article  Google Scholar 

  • Liu J, Xia Q K, Deloule E, Ingrin J, Chen H, Feng M. 2015. Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: Recycled oceanic components in the mantle source. J Petrol, 56: 681–702

    Article  Google Scholar 

  • Liu Y, Guan Y, Zhang Y, Rossman G R, Eiler J M, Taylor L A. 2012. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat Geosci, 5: 779–782

    Article  Google Scholar 

  • McCubbina F M, Steelea A, Haurib E H, Nekvasilc H, Yamashitad S, Hemleya R J. 2010. Nominally hydrous magmatism on the Moon. Proc Natl Acad Sci USA, 107: 11223–11228

    Article  Google Scholar 

  • Meng D W, Wu X L, Fan X Y, Meng X, Zheng J P, Mason R. 2009. Submicron- sized fluid inclusions and distribution of hydrous components in jadeite, quartz and symplectite-forming minerals from UHP jadeitequartzite in the Dabie Mountains, China: TEM and FTIR investigation. Appl Geochem, 24: 517–526

    Article  Google Scholar 

  • Mosenfelder J L, Le Voyer M, Rossman G R, Guan Y, Bell D R, Asimow P D, Eiler J M. 2011. Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol. Am Miner, 96: 1725–1741

    Article  Google Scholar 

  • Mosenfelder J L, Rossman G R. 2013a. Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene. Am Miner, 98: 1026–1041

    Article  Google Scholar 

  • Mosenfelder J L, Rossman G R. 2013b. Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene. Am Miner, 98: 1042–1054

    Article  Google Scholar 

  • Mosenfelder J L, Rossman G R, Johnson E A. 2015. Hydrous species in feldspars: A reassessment based on FTIR and SIMS. Am Miner, 100: 1209–1221

    Article  Google Scholar 

  • O’Leary J A, Rossman G R, Eiler J M. 2007. Hydrogen analysis in minerals by continuous-flow mass spectrometry. Am Miner, 92: 1990–1997

    Article  Google Scholar 

  • O’Leary J A, Gaetani G A, Hauri E H. 2010. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett, 297: 111–120

    Article  Google Scholar 

  • Paterson M S. 1982. The determination of hydroxyl by infrared-absorption in quartz, silicate glass and similar materials. B Mineral, 105: 20–29

    Google Scholar 

  • Peslier A H, Luhr J F, Post J. 2002. Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet Sci Lett, 201: 69–86

    Article  Google Scholar 

  • Peslier A H, Woodland A B, Wolff J A. 2008. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Acta, 72: 2711–2722

    Article  Google Scholar 

  • Peslier A H, Bizimis M, Matney M. 2015. Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, H diffusion and magma ascent rates. Geochim Cosmochim Acta, 154: 98–117

    Article  Google Scholar 

  • Regenauer-Lieb K, Yuen D A, Branlund J. 2001. The initiation of subduction: Criticality by addition of water? Science, 294: 578–580

    Article  Google Scholar 

  • Regenauer-Lieb K, Kohl T. 2003. Water solubility and diffusivity in olivine: Its role in planetary tectonics. Mineral Mag, 67: 697–715

    Article  Google Scholar 

  • Rossman G R, Beran A, Langer K. 1989. The hydrous component of pyrope from the Dora Maira Massif, Western Alps. Eur J Mineral, 1: 151–154

    Article  Google Scholar 

  • Rossman G R. 2006. Analytical methods for measuring water in nominally anhydrous minerals. Rev Mineral Geochem, 62: 1–28

    Article  Google Scholar 

  • Saal A E, Hauri E H, Cascio M L, Van Orman J A, Rutherford M C, Cooper R F. 2008. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature, 454: 192–195

    Article  Google Scholar 

  • Saal A E, Hauri E H, Van Orman J A, Rutherford M J. 2013. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science, 340: 1317–1320

    Article  Google Scholar 

  • Sambridge M, Gerald J F, Kovacs I, O’Neill H S C, Hermann J. 2008. Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development. Am Miner, 93: 751–764

    Article  Google Scholar 

  • Sharp Z D, Atudorei V, Durakiewicz T. 2001. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol, 178: 197–210

    Article  Google Scholar 

  • Sharp Z D, Shearer C K, McKeegan K D, Barnes J D, Wang Y Q. 2010. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science, 329: 1050–1053

    Article  Google Scholar 

  • Shaw A M, Hauri E H, Fischer T P, Hilton D R, Kelley K A. 2008. Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth Planet Sci Lett, 275: 138–145

    Article  Google Scholar 

  • Sheng Y M, Xia Q K, Dallai L, Yang X Z, Hao Y T. 2007. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim Cosmochim Acta, 71: 2079–2103

    Article  Google Scholar 

  • Stalder R, Prechtel F, Ludwig T. 2012. No site-specific infrared absorption coefficients for OH-defects in pure enstatite. Eur J Mineral, 24: 465–470

    Article  Google Scholar 

  • Stephant A, Remusat L, Thomen A, Robert F. 2014. Reduction of OH contamination in quantification of water contents using NanoSIMS imaging. Chem Geol, 380: 20–26

    Article  Google Scholar 

  • Su W, You Z D, Cong B L, Ye K, Zhong Z Q. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30: 611–614

    Article  Google Scholar 

  • Su W, Zhang M, Redfern S A T, Bromiley G D. 2008. Dehydroxylation of omphacite of eclogite from the Dabie-Sulu. Lithos, 105: 181–190

    Article  Google Scholar 

  • Sundvall R, Stalder R. 2011. Water in upper mantle pyroxene megacrysts and xenocrysts: A survey study. Am Miner, 96: 1215–1227

    Article  Google Scholar 

  • Sweeney R J, Prozesky V M, Springhorn K A. 1997. Use of the elastic recoil detection analysis (ERDA) microbeam technique for the quantitative determination of hydrogen in materials and hydrogen partitioning between olivine and melt at high pressures. Geochim Cosmochim Acta, 61: 101–113

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Withers A C, Hervig R L. 2009. Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol, 262: 42–56

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Withers A C, Ardia P. 2012a. H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: Consequences for dehydration melting above the transition zone. Contrib Mineral Petrol, 163: 297–316

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Humayun M. 2012b. The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem Geophys Geosyst, 13: Q03016

    Google Scholar 

  • Thomas R. 2000. Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Miner, 85: 868–872

    Article  Google Scholar 

  • Thomas S-M, Thomas R, Davidson P, Reichart P, Koch-Mueller M, Dollinger G. 2008. Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets. Am Miner, 93: 1550–1557

    Article  Google Scholar 

  • Wirth R. 2009. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol, 261: 217–229

    Article  Google Scholar 

  • Withers A C, Hirschmann M M. 2008. Influence of temperature, composition, silica activity and oxygen fugacity on the H2O storage capacity of olivine at 8 GPa. Contrib Mineral Petrol, 156: 595–605

    Article  Google Scholar 

  • Withers A C, Bureau H, Raepsaet C, Hirschmann M M. 2012. Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem Geol, 334: 92–98

    Article  Google Scholar 

  • Withers A C. 2013. On the use of unpolarized infrared spectroscopy for quantitative analysis of absorbing species in birefringent crystals. Am Miner, 98: 689–697

    Article  Google Scholar 

  • Xia Q K, Sheng Y M, Yang X Z, Yu H M. 2005. Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan, China. Chem Geol, 224: 237–246

    Article  Google Scholar 

  • Xia Q K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res-Solid Earth, 115: B07207

    Article  Google Scholar 

  • Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97

    Article  Google Scholar 

  • Xu Z, Zheng Y F, Zhao Z F, Gong B. 2014. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China. Geochim Cosmochim Acta, 143: 285–302

    Article  Google Scholar 

  • Yang X Z, Xia Q K, Deloule E, Dallai L, Fan Q C, Feng M. 2008. Water in minerals of the continental lithospheric mantle and overlying lower crust: A comparative study of peridotite and granulite xenoliths from the North China Craton. Chem Geol, 256: 33–45

    Article  Google Scholar 

  • Yang Y, Xia Q K, Feng M, Zhang P P. 2010. Temperature dependence of IR absorption of OH species in clinopyroxene. Am Miner, 95: 1439–1443

    Article  Google Scholar 

  • Yang Y, Xia Q K, Feng M, Gu X Y. 2011. In situ FTIR investigations at varying temperatures on hydrous components in rutile. Am Miner, 96: 1851–1855

    Article  Google Scholar 

  • Yang Y, Xia Q K, Feng M, Liu S C. 2012. OH in natural orthopyroxene: An in situ FTIR investigation at varying temperatures. Phys Chem Miner, 39: 413–418

    Article  Google Scholar 

  • Yang Y, Xia Q, Zhang P. 2015. Evolution of OH groups in diopside and feldspars with temperature. Eur J Mineral, 27: 185–192

    Article  Google Scholar 

  • Zhang J F, Jin Z M, Green H W, Jin S Y. 2001. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains. Chin Sci Bull, 46: 592–596

    Article  Google Scholar 

  • Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763–782

    Article  Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subductionzone fluids. Earth Planets Space, 66: 93, doi: 10.1186/1880-5981-66-93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingMing Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Gong, B., Li, W. et al. Methodological progress in trace amounts of structural water in nominally anhydrous minerals. Sci. China Earth Sci. 59, 901–909 (2016). https://doi.org/10.1007/s11430-016-5281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5281-0

Keywords

Navigation