Skip to main content
Log in

The “Diahot Tooth” is a Miocene rhinocerotid fossil brought by humans to New Caledonia

  • Research
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The “Diahot Tooth” is an isolated postcanine tooth of a large herbivorous mammal, discovered in the Diahot region of northern New Caledonia in 1875. Most authors have identified it as an upper premolar of a rhinocerotid, but an alternative proposal is that it belongs to a diprotodontoid marsupial that has been named Zygomaturus diahotensis. Either possibility raises biogeographical difficulties, because New Caledonia has been isolated from other major landmasses for 80 million years, and neither rhinocerotids nor diprodotontoids appear to be good candidates for such a long-distance overwater dispersal event. Here, we present a novel interpretation of the affinities and origin of the Diahot Tooth, based on qualitative study of its preserved morphology and quantitative phylogenetic analyses that include both rhinocerotids and diprotodontoids. We show that the Diahot Tooth most closely resembles the first deciduous premolar of Western Eurasian Miocene teleoceratine rhinocerotid Brachypotherium brachypus, with the few discrepancies relating to traits that are known to be variable in B. brachypus. Our phylogenetic analyses also support this relationship. The preservation of the Diahot Tooth closely resembles that of B. brachypus teeth from the “Faluns Sea” of the Loire basin, and we propose that the New Caledonian specimen originated there and was taken to New Caledonia by a European colonist during the mid-19th century, where it was lost, rediscovered, and incorrectly assumed to be autochthonous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The taxon-character matrices and the buffers of the resulting distance and parsimony analyses are available via the Online resources. Any further information regarding data will be available upon request to the corresponding authors.

References

  • Anderson A, Sand C, Petchey F, Worthy TH (2010) Faunal extinction and human habitation in New Caledonia: Initial results and implications of new research at the Pindai Caves. J Pacific Archaeol 1(1):89���109

    Google Scholar 

  • Antoine P-O (2002) Phylogénie et évolution des Elasmotheriina (Mammalia, Rhinocerotidae). Mém Mus natl Hist nat 188

  • Antoine P-O (2003) Middle Miocene elasmotheriine Rhinocerotidae from China and Mongolia: taxonomic revision and phylogenetic relationships. Zool Scripta 32:95–118

    Article  Google Scholar 

  • Antoine P-O (2012) Pleistocene and Holocene rhinocerotids (Mammalia, Perissodactyla) from the Indochinese Peninsula. C R Palevol 11:159–168

    Article  Google Scholar 

  • Antoine P-O, Bulot C, Ginsburg L (2000) Les rhinocérotidés (Mammalia, Perissodactyla) de l’Orléanien (Miocène inférieur) des bassins de la Garonne et de la Loire: intérêt biostratigraphique. C R Acad Sci Sci Terre Planètes 330:571–576

  • Antoine P-O, Duranthon F, Welcomme J-L (2003) Alicornops (Mammalia, Rhinocerotidae) dans le Miocène supérieur des Collines Bugti (Balouchistan, Pakistan): implications phylogénétiques. Geodiversitas 25:575–603

    Google Scholar 

  • Antoine P-O, Métais G, Orliac MJ, Crochet J-Y, Flynn LJ, Marivaux L, Rajpar AR, Roohi G, Welcomme J-L (2013) Mammalian Neogene biostratigraphy of the Sulaiman Province, Pakistan. In: Wang X, Flynn LJ, Fortelius M (eds) Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. Columbia University Press, New York, pp 400–422

  • Antoine P-O, Reyes MC, Amano N, Claude J, Bautista AP, Vos J de, Ingicco T (2022) A new clade of rhinoceroses from the Pleistocene of Southeast Asia sheds light on mainland mammal dispersals to the Philippines. Zool J Linn Soc 194:416–430. https://doi.org/10.1093/zoolinnean/zlab009

    Article  Google Scholar 

  • Antoine P-O, Becker D, Pandolfi L, Geraads D (in press) Evolution and fossil record of Old World Rhinocerotidae. In: Melletti M, Balfour D, Talukdar B (eds), Rhinos of the World: Ecology, Conservation and Management. Fascinating Life Sciences, Springer Nature

  • Antunes MT, Ginsburg L (1983) Les rhinocérotidés du Miocène de Lisbonne. Systématique, écologie, paléobiogéographie, valeur stratigraphique. Cienc Terra Lisb 7:17–98

    Google Scholar 

  • Azzaroli A (1996) Processes of island colonization by terrestrial organisms. Biogeographia 18:33–50

    Google Scholar 

  • Beck RMD (2017) The biogeographical history of non-marine mammaliaforms in the Sahul region. In: Ebach MC (ed) Handbook of Australasian Biogeography. CRC Press, Boca Raton, pp 329–366

    Google Scholar 

  • Beck RMD, Louys J, Brewer P, Archer M, Black KH, Tedford RH (2020) A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes). Sci Rep 10:9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker D, Tissier J (2020) Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina). Palaeobiodiv Palaeoenv 100:395–412

    Article  Google Scholar 

  • Bertrand P (1986) De l’utilisation de la structure de l’émail dentaire en paléobiogéographie: l’énigmatique dent du «Diahot» de Nouvelle-Calédonie n’appartient pas à un marsupial. C R Acad Sci sér 2 303:1053–1058

    Google Scholar 

  • Brunet M (1979) Les grands mammifères chefs de file de l’immigration oligocène et le problème de la limite Eocène-Oligocène en Europe. Fond Singer-Polignac, Paris

    Google Scholar 

  • Caesar M, Grandcolas P, Pellens R (2017) Outstanding micro-endemism in New Caledonia: More than one out of ten animal species have a very restricted distribution range. PLoS ONE 12:e0181437. https://doi.org/10.1371/journal.pone.0181437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson MT (2008) Correlation of environmental and cultural chronology in New Caledonia. Geoarchaeol 23:695–714

    Article  Google Scholar 

  • Cerdeño E (1993) Étude sur Diaceratherium aurelianense et Brachypotherium brachypus (Rhinocerotidae, Mammalia) du Miocène moyen de France. Bull Mus natl Hist nat 15:25–77

    Google Scholar 

  • Cerdeño E, Sánchez B (2000) Intraspecific variation and evolutionary trends of Alicornops simorrense (Rhinocerotidae) in Spain. Zool Scripta 29:275–305

    Article  Google Scholar 

  • Chazeau J (1993) Research on New Caledonian terrestrial fauna: Achievements and prospects. Biodivers Lett 1:123–129. https://doi.org/10.2307/2999756

    Article  Google Scholar 

  • Colbert EH, Hooijer DA, Granger W (1953) Pleistocene mammals from the limestone fissures of Szechwan, China. Bull Am Mus Nat Hist 102:1–134

    Google Scholar 

  • Dietrich WO (1931) Neue Nashornreste aus Schwaben (Diaceratherium tomerdingensis n. g. n. sp.). Z Säugetierkd 6:203–220

    Google Scholar 

  • Espeland M, Murienne J (2011) Diversity dynamics in New Caledonia: towards the end of the museum model? BMC Evol Biol 11:254. https://doi.org/10.1186/1471-2148-11-254

    Article  PubMed  PubMed Central  Google Scholar 

  • Filhol H (1876) Note sur la découverte d’une dent de rhinocéros fossile à la Nouvelle-Calédonie. Ann Sci Nat Paris 3:1

    Google Scholar 

  • Gagnaison C, Gagnaison J-C, Hartmann J-P (2009) Les fossiles de mammifères miocènes de la collection de J.-P. Hartmann conservés dans le Musée du Savignéen. Symbioses 23:1–16

    Google Scholar 

  • Garrouste R, Munzinger J, Leslie A, Fisher J, Folcher N, Locatelli E, Foy W, Chaillon T, Cantrill DJ, Maurizot P, Cluzel D, Lowry II PP, Crane P, Bahain J-J, Voinchet P, Jourdan H, Grandcolas P, Nel A (2021) New fossil discoveries reveal the diversity of past terrestrial ecosystems in New Caledonia. Sci Rep 11:18388. https://doi.org/10.21203/rs.3.rs-548073/v1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garutt NV (1994) Dental ontogeny of the woolly rhinoceros Coelodonta antiquitatis (Blumenbach 1799). Cranium 11:37–48

    Google Scholar 

  • Genise J-F, Garrouste R, Nel P, Grandcolas P, Maurizot P, Cluzel D, Cornette R, Fabre A-C, Nel A (2012) Asthenopodichnium in fossil wood: Different trace makers as indicators of different terrestrial palaeoenvironments. Palaeogeogr, Palaeoclimatol, Palaeoecol 365:184–191. https://doi.org/10.1016/j.palaeo.2012.09.025

    Article  Google Scholar 

  • Geraads D, Cerdeño E, García-Fernández D, Pandolfi L, Billia E, Athanassiou A, Albayrak E, Codrea V, Obada T, Deng T, Tong H-w, Lu X, Pícha Š, Marciszak A, Jovanovic G, Becker D, Zervanova J, Saoudi YS, Bacon A-M, Bérillon G, Patnaik R, Brezina J, Spassov N, Uzunidis A (2021) A database of Old World Neogene and Quaternary rhino-bearing localities. http://www.rhinoresourcecenter.com/about/fossil-rhino-database.php.

  • Giaourtsakis IX (2009) The Late Miocene mammal faunas of the Mytilinii Basin, Samos Island, Greece: new collection. 9. Rhinocerotidae. Beitr Paläontol 31:157–187

    Google Scholar 

  • Ginsburg L (2001) Les faunes de mammifères terrestres du Miocène moyen des Faluns du bassin de Savigné-sur-Lathan, France. Geodiversitas 23:381–394

    Google Scholar 

  • Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Phil Trans R Soc B 363:3309–3317. https://doi.org/10.1098/rstb.2008.0122

    Article  PubMed  PubMed Central  Google Scholar 

  • Guérin C (1980) Les Rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pléistocène supérieur en Europe occidentale. Comparaison avec les espèces actuelles. Doc Lab Géol Univ Lyon Sci Terre 79:1-1184

  • Guérin C, Santafé-Llopis JV (1978) Dicerorhinus miguelcrusafonti nov. sp., une nouvelle espèce de rhinocéros (Mammalia, Perissodactyla) du gisement pliocène supérieur de Layna (Soria, Espagne) et de la formation pliocène de Perpignan (Pyrénées-Orientales, France). Geobios 11:457–491

  • Guérin C, Winslow JH, Piboule M, Faure M (1981) Le prétendu rhinocéros de Nouvelle Calédonie est un marsupial (Zygomaturus diahotensis nov. sp.): Solution d’une énigme et conséquences paléogéographiques. Geobios 14:201–217. https://doi.org/10.1016/S0016-6995(81)80004-6

    Article  Google Scholar 

  • Hand SJ, Grant-Mackie JA (2012) Late-Holocene bats of Mé Auré Cave, New Caledonia: Evidence of human consumption and a new species record from the recent past. Holocene 22:79–90

    Article  Google Scholar 

  • Heads M (2023) Methods in molecular biogeography: The case of New Caledonia. J Biogeogr 50:1437–1453. https://doi.org/10.1111/jbi.14600

    Article  Google Scholar 

  • Heissig K (1969) Die Rhinocerotidae (Mammalia) aus der oberoligozänen Spaltenfüllung von Gaimersheim bei Ingolstadt in Bayern und ihre phylogenetische Stellung. Verl Bayer Akad Wiss 138:1–133

    Google Scholar 

  • Heissig K (1972) Paläontologische und geologische Untersuchungen im Tertiär von Pakistan. 5 – Rhinocerotidae (Mamm.) aus den unteren und mittleren Siwalik-schichten. Abh Bayer Akad Wiss Münch Math-Naturwiss Kl 152:1-112

  • Heissig K (1976) Rhinocerotidae (Mammalia) aus der Anchitherium-Fauna Anatoliens. Geol Jahrb B19:3–121

    Google Scholar 

  • Heissig K (2012) Les Rhinocerotidae (Perissodactyla) de Sansan. Mém Mus natl Hist nat 203:317–485

    Google Scholar 

  • Hirayama T, Suzuki K (2020) Undulating vertical prism decussation of Pyrotherium (Pyrotheria, Mammalia) molar. Int J Oral-Med Sci 18:164–171

    Article  Google Scholar 

  • Hooijer DA (1946) Prehistoric and fossil rhinoceroses from the Malay Archipelago and India. Zool Med Leiden 26:1–138

    Google Scholar 

  • Hullot M, Antoine P-O, Laurent Y, Merceron G (2021) Paleoecology of the Rhinocerotidae (Mammalia, Perissodactyla) from Béon 1, Montréal-du-Gers (late early Miocene, SW France): insights from dental microwear texture analysis, mesowear, and enamel hypoplasia. Palaeontol Electron 24(2):a27. https://doi.org/10.26879/1163

  • Johnson DL (1980) Problems in the land vertebrate zoogeography of certain islands and the swimming powers of elephants. J Biogeogr 7:383–398

    Article  Google Scholar 

  • Knutsen EM, Oerlemans E (2020) The last dicynodont? Re-assessing the taxonomic and temporal relationships of a contentious Australian fossil. Gondwana Res 77:184–203. https://doi.org/10.1016/j.gr.2019.07.011

    Article  Google Scholar 

  • Koenigswald W Von (2000) Two different strategies in enamel differentiation: Marsupialia versus Eutheria. In: Teaford MF, Smith MM, Ferguson MWJ (eds), Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge, pp 252–268

  • Ladiges PY, Cantrill D (2007) New Caledonia–Australian connections: biogeographic patterns and geology. Austral Syst Bot 20:383–389. https://doi.org/10.1071/SB07018

    Article  Google Scholar 

  • Lartet E (1837) Note sur les ossements fossiles des terrains tertiaires de Simorre, de Sansan, etc., dans le département du Gers, et sur la découverte récente d’une mâchoire de singe fossile. CR Acad, Paris 4:85–93

  • Matthew WD (1929) Critical observations upon Siwalik mammals (exclusive of Proboscidea). Bull Amer Mus Nat Hist 56:437–560

    Google Scholar 

  • Maurizot P, Campbell HJ (2020) Palaeobiogeography of New Caledonia. Geol Soc Lond Mem 51:189–213. https://doi.org/10.1144/M51-2019-31

    Article  Google Scholar 

  • Mazza PPA (2014) If hippopotamuses cannot swim, how did they colonize islands? Lethaia 47:494–499. https://doi.org/10.1111/let.12074

    Article  Google Scholar 

  • Mazza PPA (2015) To swim or not to swim, that is the question: a reply to van der Geer et al. Lethaia 48:289–290. https://doi.org/10.1111/let.12129

    Article  Google Scholar 

  • Mazza PPA, Buccianti A, Savorelli A (2019) Grasping at straws: a re-evaluation of sweepstakes colonisation of islands by mammals. Biol Rev 94:1364–1380. https://doi.org/10.1111/brv.12506

    Article  PubMed  Google Scholar 

  • Merle I (2020) Expériences Coloniales. La Nouvelle-Calédonie. 1853–1920. Anacharsis, Griffe Essais, 9791027904037

  • Morat P (1993) Our knowledge of the flora of New Caledonia: Endemism and diversity in relation to Vegetation types and substrates. Biodiv Lett 1:72–81. https://doi.org/10.2307/2999750

    Article  Google Scholar 

  • Murray P, Megirian D, Rich T, Plane M, Vickers-Rich P (2000) Neohelos stirtoni, a new species of Zygomaturinae (Diprotodontidae: Marsupialia) from the mid-Tertiary of northern Australia. Rec Queen Victoria Mus 105:1–47

    Google Scholar 

  • Nattier R, Pellens R, Robillard T, Jourdan H, Legendre F, Caesar M, Nel A, Grandcolas P (2017) Updating the phylogenetic dating of New Caledonian biodiversity with a meta-analysis of the available evidence. Sci Rep 7:3705. https://doi.org/10.1038/s41598-017-02964-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page RDM (2001) NDE: NEXUS data editor 0.5. 0. Univ Glasgow

  • Pandolfi L, Boscato P, Crezzini J, Gatta M, Moroni A, Rolfo M, Tagliacozzo A (2017) Late Pleistocene last occurrences of the narrow-nosed rhinoceros Stephanorhinus hemitoechus (Mammalia, Perissodactyla) in Italy. Riv Ital Paleont Stratigr 123:177–192

    Google Scholar 

  • Pandolfi L, Antoine P-O, Bukhsianidze M, Lordkipanidze D, Rook L (2021) Northern Eurasian rhinocerotines (Mammalia, Perissodactyla) by the Pliocene-Pleistocene transition: phylogeny and historical biogeography. J Syst Palaeont 19:1031–1057. https://doi.org/10.1080/14772019.2021.1995907

    Article  Google Scholar 

  • Peter K (2002) Odontologie der Nashornverwandten (Rhinocerotidae) aus dem Miozän (MN5) von Sandelzhausen (Bayern). Zitteliana 22:3–168

    Google Scholar 

  • Pillon Y, Barrabé L, Buerki S (2017) How many genera of vascular plants are endemic to New Caledonia? A critical review based on phylogenetic evidence. Bot J Linn Soc 183:177–198. https://doi.org/10.1093/botlinnean/bow001

    Article  Google Scholar 

  • Price GJ, Sobbe IH (2011) Morphological variation within an individual Pleistocene Diprotodon optatum Owen, 1838 (Diprotodontinae; Marsupialia): implications for taxonomy within diprotodontoids. Alcheringa 35:21–29. https://doi.org/10.1080/03115511003793553

    Article  Google Scholar 

  • Rensberger JM, Pfretzschner HU (1992) Enamel structure in astrapotheres and its functional implications. Scan Microsc 6:495–510

    CAS  Google Scholar 

  • Répelin J (1917) Études paléontologiques dans le sud-ouest de la France (Mammifères). Les rhinocérotidés de l’Aquitanien supérieur de l’Agenais (Laugnac). Ann Mus Hist nat Marseille 16:1–47

    Google Scholar 

  • Rich THV, Fortelius M, Rich PV, Hooijer DA (1987) The supposed Zygomaturus from New Caledonia is a rhinoceros: A second solution to an enigma and its palaeogeographic consequences. In: Archer M (ed) Possums and Opossums: Studies in Evolution. Surrey Beatty & Sons and the Royal Zoological Society of New South Wales, Sydney, pp 769–778

    Google Scholar 

  • Richards HL, Wells RT, Evans AR, Fitzgerald EMG, Adams JW (2019) The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants. PLoS ONE 14(9):e0221824. https://doi.org/10.1371/journal.pone.0221824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sizov A, Klementiev A, Antoine P-O (2024) An early Miocene skeleton of Brachydiceratherium Lavocat, 1951 (Mammalia, Perissodactyla) from the Baikal area, Russia, and a revised phylogeny of Eurasian teleoceratines. PCI Paleontology. https://doi.org/10.1101/2022.07.06.498987

    Article  Google Scholar 

  • Skipwith PL, Bauer AM, Jackman TR, Sadlier RA (2016) Old but not ancient: coalescent species tree of New Caledonian geckos reveals recent post-inundation diversification. J Biogeogr 43:1266–1276

    Article  Google Scholar 

  • Stirton RA, Woodburne MO, Plane MD (1967) A phylogeny of the Tertiary Diprotodontidae and its significance in correlation. Bur Min Res Geol Geophys Aust Bull 85:149–160

  • Suarez CA, Macpherson GL, González LA, Grandstaff DE (2010) Heterogeneous rare earth element (REE) patterns and concentrations in a fossil bone: Implications for the use of REE in vertebrate taphonomy and fossilization history. Geochim Cosmochim Acta 74:2970–2988. https://doi.org/10.1016/j.gca.2010.02.023

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10, Sunderland, Sinauer Associates, Inc, Publishers, Sunderland

    Google Scholar 

  • Tissier J, Antoine P-O, Becker D (2021) New species, revision, and phylogeny of Ronzotherium Aymard 1854 (Perissodactyla, Rhinocerotidae). Eur J Taxon 753:1–80. https://doi.org/10.5852/ejt.2021.753.1389

    Article  Google Scholar 

  • Tong H-W, Wang X-M (2014 Juvenile skulls and other postcranial bones of Coelodonta nihowanensis from Shanshenmiaozui, Nihewan Basin, China. J Vertebr Paleontol 34:710–724

    Article  Google Scholar 

  • Uhlig U (1999) Die Rhinocerotoidea (Mammalia) aus der unteroligozänen Spaltenfüllung Möhren 13 bei Treuchtlingen in Bayern. Abh Bayer Akad Wiss Math-Naturwiss Kl NF 170:1–254

    Google Scholar 

  • van der Geer A, Lyras G, de Vos J, Dermitzakis M (2010) Evolution of Island Mammals: Adaptation an Extinction of Placental Mammals on Islands. Wiley-Blackwell, Chichester, UK

    Book  Google Scholar 

  • van der Geer AAE, Anastasakis G, Lyras GA (2015) If hippopotamuses cannot swim, how did they colonize islands: a reply to Mazza. Lethaia 48:147–150. https://doi.org/10.1111/let.12095

    Article  Google Scholar 

  • Wood HE (1933) A fossil rhinoceros (Diceratherium armatum Marsh) from Gallatin County, Montana. Proc U S Natl Mus 82:1–8

    Article  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Christine Argot (Muséum National d’Histoire Naturelle, in Paris), for allowing us to get access to the Diahot Tooth. We are also indebted to colleagues from Nouméa, including Muriel Glaunec-Mainguet (City Museums curator), Christophe Dervieux (New Caledonia Archive), Christophe Sand (New Caledonia and Pacific Archeology institute), and Louis Lagarde (University of New Caledonia) for fruitful discussion and their help concerning the history of the archipelago. Gilbert Price (University of Queensland) kindly provided comparative photographs of diprotodontoid specimens. We extend our warm thanks to Esperanza Cerdeño and an anonymous reviewer for their constructive and supportive remarks, as well as Ornella C. Bertrand and Darin A. Croft for having carefully handled this manuscript. POA dedicates this work to the memory of Léonard Ginsburg and Jean-Loup Welcomme, for their endless discussions about the Diahot Tooth. This is ISEM publication n°2024-143.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the research. O.A. and P.-O.A. wrote the first draft of the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Oscar Affholder or Pierre-Olivier Antoine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Online Resource 2

Online Resource 3

Online Resource 4

Online Resource 5

Appendix 1

Appendix 1

  1. 1.

    Occlusal outline, shape: (0) triangular; (1) tear-shaped; (2) comma-like; (3) pentagonal.

  2. 2.

    Occlusal outline, proportion: (0) W/L < 1; (1) W/L > 1.

  3. 3.

    Enamel aspect: (0) striated; (1) corrugated; (2) striated and corrugated.

  4. 4.

    Crown height: (0) low (brachydont; H/L < 1); (1) high (hypsodont; H/L > 1).

  5. 5.

    Cement: (0) absent; (1) present.

  6. 6.

    Protoloph: (0) present; (1) more often or equally present; (2) more often absent; (3) absent.

  7. 7.

    Protoloph: as high as the metaloph/hypocone; (1) lower than the metaloph/hypocone.

  8. 8.

    Protoloph: (0) continuous; (1) split in two parts.

  9. 9.

    Metaloph, orientation: (0) mesolingually directed; (1) transverse; (2) distolingually directed.

  10. 10.

    Ectoloph: (0) straight; (1) more or equally often straight; (2) more often convex; (3) convex.

  11. 11.

    Parastyle: (0) present; (1) absent.

  12. 12.

    Parastyle, orientation: (0) sagittal; (1) curved lingually.

  13. 13.

    Parastyle constriction: (0) present; (1) absent.

  14. 14.

    Paracone fold: (0) absent; (1) more or equally often absent; (2) more often present; (3) present.

  15. 15.

    Metacone fold: (0) absent/weak; (1) more or equally often absent; (2) more often strongly marked; (3) strongly marked.

  16. 16.

    Prefossette: (0) present; (1) absent.

  17. 17.

    Lingual cingulum: (0) present; (1) more or equally often present; (2) more often absent; (3) absent.

  18. 18.

    Lingual cingulum: (0) continuous; (1) interrupted.

  19. 19.

    Hypocone: (0) present; (1) absent.

  20. 20.

    Labial cingulum: (0) present; (1) more or equally often present; (2) more often absent; (3) absent.

  21. 21.

    Labial cingulum: (0) continuous; (1) interrupted.

  22. 22.

    Protocone: (0) present; (1) more or equally often present; (2) more often absent; (3) absent.

  23. 23.

    Protocone-Hypocone: (0) equally developed; (1) protocone < hypocone.

  24. 24.

    Median valley: (0) open lingually; (1) more or equally often open lingually; (2) more often closed lingually; (3) closed lingually (lingual wall).

  25. 25.

    Crochet: (0) absent; (1) more or equally often absent; (2) more often present; (3) present.

  26. 26.

    Crista: (0) absent (1) more or equally often absent; (2) more often present; (3) present.

  27. 27.

    Secondary enamel foldings: (0) absent; (1) present.

  28. 28.

    Postfossette (on worn teeth): (0) narrow; (1) wide.

  29. 29.

    Postfossette: (0) as deep as the median valley; (1) shallower than the median valley.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Affholder, O., Antoine, PO. & Beck, R.M. The “Diahot Tooth” is a Miocene rhinocerotid fossil brought by humans to New Caledonia. J Mammal Evol 31, 27 (2024). https://doi.org/10.1007/s10914-024-09723-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10914-024-09723-6

Keywords

Navigation