Skip to main content
Log in

A one-step method for pore expansion and enlargement of hollow cavity of hollow periodic mesoporous organosilica spheres

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a facile one-step method combining the pore expansion and the enlargement of the hollow cavity of hollow periodic mesoporous organosilica spheres (HPMOSs) into one step was proposed. Moreover, the whole process for the formation just needs 1 h and involves reaction just under normal pressure and temperature. We further investigate the influence of different expanders and the amount of expanders on pore size and hollow cavity size. The obtained HPMOSs using tridecane as expander possess excellent properties, including good spherical morphology, large hollow structures, radially oriented mesochannels (3.44 nm), uniform particle size (115 nm), high BET surface area (1298 m2/g), and large pore volume (1.96 cm3/g). In addition, the hollow cavity size and the mesoporous size can be controlled via the modulation of tridecane amount. This method also provides a basis for synthesizing both large pore and the hollow cavity of functionalized, monodispersed HPMOSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yang Y, Bernardi S, Song H et al (2016) Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient. Chem Mater 28:704–707

    Article  Google Scholar 

  2. Manchanda AS, Kruk M (2016) Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated bridging groups. Micropor Mesopor Mat 222:153–159

    Article  Google Scholar 

  3. Chen Y, Meng Q, Wu M et al (2014) Hollow mesoporous organosilica nanoparticles: a generic intelligent framework-hybridization approach for biomedicine. J Am Chem Soc 136:16326–16334

    Article  Google Scholar 

  4. Voort PVD, Esquivel D, Canck ED et al (2013) Periodic mesoporous organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem Soc Rev 42:3913–3955

    Article  Google Scholar 

  5. Shimojima A (2015) Hollow inorganic spheres. In: Levy D, Zayat M (eds) Synthesis, characterization, and applications. Wiley, Weinheim, pp 345–371

    Google Scholar 

  6. Olkhovyk O, Jaroniec M (2005) Periodic mesoporous organosilica with large heterocyclic bridging groups. J Am Chem Soc 127:60–61

    Article  Google Scholar 

  7. Wang W, Lofgreen JE, Ozin GA (2010) Why PMO? towards functionality and utility of periodic mesoporous organosilicas. Small 6:2634–2642

    Article  Google Scholar 

  8. Croissant J, Cattoën X, Man MWC et al (2015) Syntheses and applications of periodic mesoporous. Nanoscale 48:20318–20334

    Article  Google Scholar 

  9. Shi JY, Wang CA, Li ZJ et al (2011) Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chemistry 17:6206–6213

    Article  Google Scholar 

  10. Li XB, Yang Y, Yang QH (2013) Organo-functionalized silica hollow nanospheres: synthesis and catalytic application. J Mater Chem A 1:1525–1535

    Article  Google Scholar 

  11. Hu J, Wang XG, Liu LQ et al (2014) A facile and general fabrication method for organic silica hollow spheres and their excellent adsorption properties for heavy metal ions. J Mater Chem A 2:19771–19777

    Article  Google Scholar 

  12. Qian XQ, Wang WP, Kong WT et al (2014) Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy. RSC Advances 4:17950–17958

    Article  Google Scholar 

  13. Lu N, Tian Y, Tian W et al (2016) Smart cancer cell targeting imaging and drug delivery system by systematically engineering periodic mesoporous organosilica nanoparticles. ACS Appl Mater Interfaces 8:2985–2993

    Article  Google Scholar 

  14. Djojoputro H, Zhou F, Qiao SZ et al (2006) Periodic mesoporous organosilica hollow spheres with tunable wall thickness. J Am Chem Soc 128:6320–6321

    Article  Google Scholar 

  15. Yang LG, Guo HL, Wang LZ et al (2016) A facile “polystyrene-dissolving” strategy to hollow periodic mesoporous organosilica with flexible structure-tailorability. Micropor Mesopor Mat 239:173–179

    Article  Google Scholar 

  16. Guo W, Wang J, Lee SJ et al (2010) A general pH-responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. Chemistry 16:8641–8646

    Article  Google Scholar 

  17. Ma N, Deng YQ, Liu WT et al (2016) A one-step synthesis of hollow periodic mesoporous organosilica spheres with radially oriented mesochannels. Chem Commun 52:3544–3547

    Article  Google Scholar 

  18. Amanpreet SM, Michal K (2016) Synthesis of xylylene-bridged periodic mesoporous organosilicas and related hollow spherical nanoparticles. Langmuir 32:900–908

    Article  Google Scholar 

  19. Ma Z, Bai J, Wang Y et al (2014) Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis. ACS Appl Mater Interfaces 6:2431–2438

    Article  Google Scholar 

  20. Suzuki TM, Mizutani M, Nakamura T et al (2008) Pore-expansion of organically functionalized monodispersed mesoporous silica spheres and pore-size effects on adsorption and catalytic properties. Micropor Mesopor Mat 116:284–291

    Article  Google Scholar 

  21. Yang Y, Niu Y, Zhang J et al (2015) Biphasic synthesis of large-pore and well-dispersed benzene bridged mesoporous organosilica nanoparticles for intracellular protein delivery. Small 11:2743–2749

    Article  Google Scholar 

  22. Bao XY, Zhao XS, Li X et al (2005) A novel route toward the synthesis of high-quality large-pore periodic mesoporous organosilicas. J Phys Chem B 108:4684–4689

    Article  Google Scholar 

  23. Zhang YP, Jin Y, Yu H et al (2010) Pore expansion of highly monodisperse phenylene-bridged organosilica spheres for chromatographic application. Talanta 81:824–830

    Article  Google Scholar 

  24. Wu M, Meng Q, Chen Y et al (2016) Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv Mater 28:1963–1969

    Article  Google Scholar 

  25. Mizutani M, Yamada Y, Nakamura T et al (2008) Anomalous pore expansion of highly monodispersed mesoporous silica spheres and its application to the synthesis of porous ferromagnetic composite. Chem Mater 20:4777–4782

    Article  Google Scholar 

  26. Teng ZG, Su XD, Zheng YY et al (2015) A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. J Am Chem Soc 137:7935–7944

    Article  Google Scholar 

  27. Zhang Y, Yu MH, Zhou L et al (2008) Organosilica multilamellar vesicles with tunable number of layers and sponge-like walls via one surfactant templating. Chem Mater 20:6238–6243

    Article  Google Scholar 

  28. Kao KC, Mou CY (2012) Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Micropor Mesopor Mat 169:7–15

    Article  Google Scholar 

  29. Qiao SZ, Lin CX, Jin Y et al (2009) Surface-functionalized periodic mesoporous organosilica hollow spheres. J Phy Chem C 113:8673–8782

    Article  Google Scholar 

  30. Yoon SB, Kim JY, Kim JH et al (2006) Template synthesis of nanostructured silica with hollow core and mesoporous shell structures. CAP 6:1059–1063

    Google Scholar 

  31. Wahab MA, Kim II, Ha CS (2004) Hybrid periodic mesoporous organosilica materials prepared from 1, 2-bis (triethoxysilyl) ethane and (3-cyanopropyl) triethoxysilane. Micropor Mesopor Mat 69:19–27

    Article  Google Scholar 

  32. Liu J, Yang HQ, Kleitz F et al (2012) Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: ideal nanoreactors for selective alcohol oxidation. Adv Funct Mater 22:591–599

    Article  Google Scholar 

  33. Zhu FX, Wang W, Li HX (2011) Water-medium and solvent-free organic reactions over a bifunctional catalyst with Au nanoparticles covalently bonded to HS/SO3H functionalized periodic mesoporous organosilica. J Am Chem Soc 133:11632–11640

    Article  Google Scholar 

  34. Yan X, Han SH, Hou WG et al (2007) Synthesis of highly ordered mesoporous silica using cationic trimeric surfactant as structure-directing agent. Colloids Surf A 303:219–225

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the financial supports from the China Postdoctoral Science Foundation (Grant Nos. 2015M581089 and 2016T90092) and the National Natural Science Foundation of China (Grant Nos. 51172120 and 51572140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Ma or Jinlong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ma, N., Li, S. et al. A one-step method for pore expansion and enlargement of hollow cavity of hollow periodic mesoporous organosilica spheres. J Mater Sci 52, 2868–2878 (2017). https://doi.org/10.1007/s10853-016-0580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0580-6

Keywords

Navigation