Skip to main content

Advertisement

Log in

Climate change and its consequences on the climatic zoning of Coffea canephora in Brazil

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Coffee production has a large share in Brazilian agribusiness and a cultural and social importance in the country. Worldwide, Brazil is the largest producer of arabica coffee and the second largest of canephora species. In 2020, national production was 14.3 million bags of canephora coffee. Few studies on canephora coffee adaptation to climate changes can be found in the literature. Thus, our goal was to identify areas suitable for Coffea canephora cultivation in Brazil under CMIP-5 climate change framework. The study was carried out for the entire country using data on average air temperature data for the entire year, November, and the coldest month, as well as average annual accumulated water deficit for the period of 1960–2020. These data were gathered from the Meteorological Database for Teaching and Research (BDMEP) of the National Institute of Meteorology of Brazil-INMET (Brazil 1992). Furthermore, BCC-CSM1.1 climate model was used at 125 × 125 km resolution to simulate future climate using WorldClim 2 data for 2041–2080, in the Representative Concentration Pathway (RCP) scenarios 2.6, 4.5, 6.0, and 8.5. Potential climate changes can negatively impact canephora coffee plantations in all CMIP5 RCP scenarios studied. The BCC-CSM1.1 scenarios showed a 65% reduction in total areas suitable for coffee cultivation in Brazil. Rondônia and Bahia were states with the greatest impact of climate change since they had the largest reduction in areas suitable for canephora coffee growth. Currently, both states are major C. canephora producers and can therefore directly compromise regional economy. Thermal excess was the most common class for future scenarios, averaging 56.76% of the entire country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from DAMATTA et al. (2007)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data/material is opened.

References

  • Alvares, C. A., et al. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Google Scholar 

  • Andrade, H. J.; Zapata, P. C. (2019) Mitigation of climate change of coffee production systems in Cundinamarca, Colombia. Floresta e Ambiente, 26(3).

  • Angelocci, L. R.; Sentelhas, P. C.; Pereira, A. R. (2002) Agrometeorologia fundamentos e aplicações práticas. Agropecuária, Guairá.

  • Babova, O., Occhipinti, A., & Maffei, M. E. (2016). Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry, 123, 33–39.

    CAS  Google Scholar 

  • Bergo, C. L., Pereira, R. D. C. A., & Sales, F. D. (2008). Avaliação de genótipos de cafeeiros Arabica e Robusta no estado do Acre. Ciência e Agrotecnologia, 32(1), 11–16.

  • Bragança, S. M., et al. (2001). Variedades clonais de café Conilon para o Estado do Espírito Santo. Pesquisa Agropecuária Brasileira, 36, 765–770.

    Google Scholar 

  • Brazil, RADAMBRASIL. (1981) Project ministry of mines and energy. General secretary.

  • Byrareddy, V., et al. (2020). Win-win: Improved irrigation management saves water and increases yield for robusta coffee farms in Vietnam. Agricultural Water Management, 241, 106350.

    Google Scholar 

  • Carleton, T. A., & Hsiang, S. M. (2016). Social and economic impacts of climate. Science (new York, N.y.), 353(6304), 09.

    Google Scholar 

  • Cavatte, P. C., et al. (2012). Could shading reduce the negative impacts of drought on coffee? A Morphophysiological Analysis. Physiologia Plantarum, 144(2), 111–122.

    CAS  Google Scholar 

  • Chengappa, P. G., Devika, C. M., & Rudragouda, C. S. (2017). Climate variability and mitigation: perceptions and strategies adopted by traditional coffee growers in India. Climate and Development, 7(593–604), 10.

    Google Scholar 

  • Conab, CNDAC. (2020) Acompanhamento da safra brasileira: caféConab, , 2020. Disponível em: http://www.conab.gov.br//infoagro/safra. Acesso em: 17 Jul.

  • Covre, A. M., et al. (2016). Vegetative growth of Conilon coffee plants under two water conditions in the Atlantic region of Bahia State Brazil. Acta Scientiarum Agronomy, 38(4), 535.

    Google Scholar 

  • da Silva, T. G., et al. (2010). Cenários de mudanças climáticas e seus impactos na produção leiteira em estados nordestinos. Revista Brasileira De Engenharia Agrícola e Ambiental, 14, 863–870.

    Google Scholar 

  • Damatta, F. M., et al. (2007). Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19, 485–510.

    CAS  Google Scholar 

  • Davis, A. P., et al. (2012). The impact of climate change on indigenous arabica coffee (coffea arabica): Predicting future trends and identifying priorities. PLoS ONE, 11, e47981.

    Google Scholar 

  • Davis, A. P., et al. (2011). Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society, 167(4), 357–377.

    Google Scholar 

  • de Camargo, A., (1977). Zoneamento de aptidão climática para a cafeicultura de arábica e robusta no Brasil. Fundação IBGE, Recursos, meio ambiente e poluição, 68–76.

  • de Camargo, A., & Pereira, A. (1994). Agrometeorology of the coffee crop. Geneva: World Meteorological Organization, 92.

  • de Sousa, J. W., & de Oliveira, P. F. (2018). Risco climático para o café Conilon (Coffea canephora) nos municípios de Rio Branco, Tarauacá e Cruzeiro do Sul, AC. Revista Brasileira de Ciências da Amazônia/Brazilian. Journal of Science of the Amazon, 7(2), 31–40.

  • de Souza Rolim, G., Sentelhas, P. C., & Barbieri, V. (1998). Planilhas no ambiente EXCEL TM para os cálculos de balanços hídricos: Normal, sequencial, de cultura e de produtividade real e potencial. Rev. Bras. Agrometeorol, 6, 133–137.

    Google Scholar 

  • de Souza, F. F., et al. (2004) Características das principais variedades de café cultivadas em Rondônia.

  • de Camargo, M. B. P. (2010). The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, 69(1), 239–247.

    Google Scholar 

  • de Carvalho, J. R. P., Assad, E. D., & Pinto, H. S. (2012). Interpoladores geoestatísticos na análise da distribuição espacial da precipitação anual e de sua relação com altitude. Pesquisa Agropecuária Brasileira, 47, 1235–1242.

    Google Scholar 

  • de Simões, R. O., et al. (2020). Sensory characterization of coffee (Coffea arabica L.) Harvested in different percentages of the cherry maturation stage / Caracterização sensorial do café (Coffea arábica L.) colhido em diferentes percentagens do estádio de maturação cereja. Brazilian Journal of Development, 6(4), 19825–19836.

    Google Scholar 

  • Do Amaral, J. A. T., Rena, A. B., & Do Amaral, J. F. T. (2006). Crescimento vegetativo sazonal do cafeeiro e sua relação com fotoperíodo, frutificação, resistência estomática e fotossíntese. Pesquisa Agropecuária Brasileira, 41(3), 377–384.

    Google Scholar 

  • Domínguez-Gabriel, J., et al. (2021). Brevipalpus mites associated with coffee plants (Coffea arabica and C. canephora) in Chiapas. Mexico. Experimental and Applied Acarology, 85(1), 1–17.

    Google Scholar 

  • Eugenio, F. C. et al. (2014) Zoneamento agroclimatológico do Coffea canephora para Espírito Santo mediante interpolação espacial.

  • Fahl, J. I., et al. (1994). Nitrogen and irradiance levels affecting net photosynthesis and growth of young coffee plants (Coffea arabica L.). Journal of Horticultural Science, 69(1), 161–169.

    CAS  Google Scholar 

  • Farah, A. Coffee Constituents. In: CHU, Y.-F. (Ed.). Coffee. Oxford, UK: Wiley-Blackwell, 2012. p. 21–58.

  • Ferrão, M. A. G., et al. (2021). Characterization and genetic diversity of Coffea canephora accessions in a germplasm bank in Espírito Santo. Brazil. Crop Breeding and Applied Biotechnology, 21(2), e36132123.

    Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

    Google Scholar 

  • Flato, G. et al. (2014). Evaluation of climate models. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [s.l.] Cambridge University Press. p. 741–866.

  • Halder, D., et al. (2020). Assessment of future climate variability and potential adaptation strategies on yield of peanut and Kharif rice in eastern India. Theoretical and Applied Climatology, 140(3), 823–838.

    Google Scholar 

  • Huang, W., et al. (2020). Impact of seasonal and temperature-dependent variation in root defense metabolites on herbivore preference in taraxacum officinale. Journal of Chemical Ecology, 46(1), 63–75.

    CAS  Google Scholar 

  • IBGE, I. B. D. G. E. E. (2019). Sistema IBGE de Recuperação Automática - SIDRA: Produção Agrícola Municipal. Disponível em: https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2020. Acesso em: 25 maio. 2021.

  • IBGE, I. B. D. G. E. E. (2020). Sistema IBGE de Recuperação Automática - SIDRA: Produção Agrícola Municipal. Disponível em: https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2020. Acesso em: 28 maio. 2021.

  • IBGE, I. B. D. G. E. E. (2021) Sistema IBGE de Recuperação Automática-SIDRA: Produção Agrícola Municipal. Disponível em: https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2020. Acesso em: 28 maio.

  • IPCC. (2007). Climate Change 2007: The Physical Science Basis. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  • IPCC. (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change.

  • IPCC. (2018) Global warming of 1.5°C, summary for policymakers. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change.

  • Jödicke, K., et al. (2020). The influence of process parameters on the quality of dried agricultural products determined using the cumulated thermal load. Drying Technology, 38(3), 321–332.

    Google Scholar 

  • Kogo, B. K., Kumar, L., & Koech, R. (2021). Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environment, Development and Sustainability, 23(1), 23–43.

    Google Scholar 

  • Koppen, W. D. (1936). Geographische system der klimat. Handbuch der klimatologie. (p. 46).

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119–139.

    Google Scholar 

  • Leichenko, R. M., O’Brien, K. L., & Solecki, W. D. (2010). Climate change and the global financial crisis: A case of double exposure. Annals of the Association of American Geographers, 100(4), 963–972.

    Google Scholar 

  • Machado Filho, J. A., et al. (2021). Linking root and stem hydraulic traits to leaf physiological parameters in Coffea canephora clones with contrasting drought tolerance. Journal of Plant Physiology, 258, 153355.

    Google Scholar 

  • Marcolan, A. et al. (2009) Cultivo dos cafeeiros conilon e robusta para Rondônia. Embrapa Rondônia. Sistema de produção.

  • Matiello, J. B. O., (1991) café: do cultivo ao consumo. [s.l.] Editora Globo São Paulo.

  • Morais, H., et al. (2003). Características fisiológicas e de crescimento de cafeeiro sombreado com guandu e cultivado a pleno sol. Pesquisa Agropecuária Brasileira, 38(10), 1131–1137.

    Google Scholar 

  • Morais, H., et al. (2008). Escala fenológica detalhada da fase reprodutiva de Cooffea arabica. Bragantia, 67(1), 257–260.

    Google Scholar 

  • Muñoz-Rios, L. A., Vargas-Villegas, J., & Suarez, A. (2020). Local perceptions about rural abandonment drivers in the Colombian coffee region: Insights from the city of Manizales. Land Use Policy, 91, 104361.

    Google Scholar 

  • Ngolo, A. O., et al. (2018). Agroclimatic zoning for coffee crop in Angola1. Pesquisa Agropecuária Tropical, 48, 19–28.

    Google Scholar 

  • Pereira, P. V., et al. (2021). Microbial diversity and chemical characteristics of Coffea canephora grown in different environments and processed by dry method. World Journal of Microbiology and Biotechnology, 37(3), 51.

    CAS  Google Scholar 

  • Pezzopane, J. et al. (2012) Agrometeorologia: aplicações para o Espírito Santo. Alegre, ES: CAUFES.

  • Pham, Y., et al. (2019). The impact of climate change and variability on coffee production: A systematic review. Climatic Change, 156(4), 609–630.

    CAS  Google Scholar 

  • Piedra-Bonilla, E. B., da Cunha, D. A., & Braga, M. J. (2020). Climate variability and crop diversification in Brazil: An ordered probit analysis. Journal of Cleaner Production, 256, 120252.

    Google Scholar 

  • Rahn, E., et al. (2018). Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecological Modelling, 371, 76–89.

    Google Scholar 

  • Rena, A.; Barros, R. 2004 Aspectos críticos no estudo da floração do café. Efeitos da irrigação sobre a qualidade e produtividade do café, 149–172.

  • Schauberger, B., et al. (2017). Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 8(1), 1–9.

    Google Scholar 

  • Sediyama, T. et al. Divergência genética em café conilon. 2015.

  • Seyboth, K. (2013) Intergovernmental panel on climate change (IPCC). Encyclopedia of Energy, Natural Resource, and Environmental Economics.

  • Thornthwaite, C., Mather, J. (1955) The water balance publications in climatology, 8 (1). DIT, Laboratory of climatology, Centerton, NJ, USA.

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    Google Scholar 

  • Tucci, CEM., Hespanhol, I., Netto, MOC. (2001) Water management in Brazil. [s.l.] UNESCO. Brasília.

  • Vegro, C. L. R.; Almeida, L. F. (2020) Global coffee market: Socio-economic and cultural dynamics. In: Coffee Consumption and Industry Strategies in Brazil. [s.l.] Elsevier, p. 3–19.

  • Venancio, L. P., et al. (2020). Impact of drought associated with high temperatures on Coffea canephora plantations: a case study in Espírito Santo State Brazil. Scientific Reports, 10(1), 19719.

    CAS  Google Scholar 

  • Zilli, M., et al. (2020). The impact of climate change on Brazil’s agriculture. Science of the Total Environment, 740, 139384.

    CAS  Google Scholar 

  • Zullo, J., et al. (2011). Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Climatic Change, 109(3–4), 535–548.

    Google Scholar 

Download references

Acknowledgements

This study was performed with a financial support from the Instituto Federal do Mato Grosso do Sul – IFMS (Federal Institute of Mato Grosso do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Eduardo de Oliveira Aparecido.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorençone, P.A., de Oliveira Aparecido, L.E., Lorençone, J.A. et al. Climate change and its consequences on the climatic zoning of Coffea canephora in Brazil. Environ Dev Sustain 26, 8377–8398 (2024). https://doi.org/10.1007/s10668-023-03051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03051-0

Keywords

Navigation