Skip to main content

Advertisement

Log in

Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Fe(II)-oxidizing bacteria (FeOB) are important catalysts for iron cycling in iron-rich marine, groundwater, and freshwater environments. However, few studies have reported the distribution and diversity of these bacteria in flooded paddy soils. This study investigates the microbial structure and diversity of microaerophilic Fe(II)-oxidizing bacteria (mFeOB) and their possible role in Fe(II) oxidation in iron-rich paddy soils. Using enrichment experiments that employed serial transfers, the changes in microaerophilic microbial community were examined via 16S rRNA gene high-throughput sequencing. During enrichments, the Fe(II) oxidation rate decreased as transfers increased, and the maximum rate of Fe(II) oxidation was observed in the first transfer (0.197 mM day−1). Results from X-ray diffraction of minerals and scanning electron microscopy of the cell-mineral aggregates revealed that cell surfaces in all transfers were partly covered with amorphous iron oxide formed by FeOB. After four transfers, the phyla of Proteobacteria had a dominant presence that reached up to 95%. Compared with the original soil, the relative abundances of Cupriavidus, Massilia, Pseudomonas, Ralstonia, Sphingomonas, and Variovorax increased in FeS gradient tubes and became dominant genera after transfers. Cupriavidus, Pseudomonas, and Ralstonia have been identified as FeOB previously. Furthermore, the structure of the microbial community tended to be stable as transfers increased, indicating that other bacterial species might perform important roles in Fe(II) oxidation. These results suggest the potential involvement of mFeOB and these other microorganisms in the Fe(II)-oxidizing process of soils. It will be helpful for future studies to consider their role in related biogeochemical processes, such as transformation of organic matters and heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Benzine, J., Shelobolina, E., Xiong, M. Y., Kennedy, D. W., McKinley, J. P., Lin, X., et al. (2013). Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments. Frontiers in Microbiology, 4, 388.

    Google Scholar 

  • Blackwell, N., Perkins, W., Palumbo-Roe, B., Bearcock, J., Lloyd, J. R., & Edwards, A. (2019). Seasonal blooms of neutrophilic Betaproteobacterial Fe(II) oxidizers and Chlorobi in iron-rich coal mine drainage sediments. FEMS Microbiology Ecology, 95(10), 140.

    Google Scholar 

  • Blothe, M., & Roden, E. E. (2009). Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Applied and Environmental Microbiology, 75(21), 6937–6940.

    CAS  Google Scholar 

  • Bryce, C., Blackwell, N., Schmidt, C., Otte, J., Huang, Y., Kleindienst, S., et al. (2018). Microbial anaerobic Fe(II)—Ecology, mechanisms and environmental implications. Environmental Microbiology, 20, 3462–3483.

    CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    CAS  Google Scholar 

  • Chan, C., Emerson, D., & Luther, G., III. (2016). The role of microaerophilic Fe-oxidizing microorganisms in producing banded iron formations. Geobiology, 14(5), 509–528.

    CAS  Google Scholar 

  • Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J., & Edwards, K. J. (2011). Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. The ISME Journal, 5(4), 717.

    CAS  Google Scholar 

  • Colmer, T. (2002). Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Annals of Botany, 91(2), 301–309.

    Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrences and uses. Hoboken: Wiley.

    Google Scholar 

  • Costa, R., Salles, J. F., Berg, G., & Smalla, K. (2006). Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environmental Microbiology, 8(12), 2136–2149.

    CAS  Google Scholar 

  • Dahl, C., Friedrich, C., & Kletzin, A. (2008). Sulfur oxidation in prokaryotes. e LS.

  • Deveau, A., Gross, H., Palin, B., Mehnaz, S., Schnepf, M., Leblond, P., et al. (2016). Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiology Ecology, 92(8), 107.

    Google Scholar 

  • Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P., & Luther, G. W., III. (2008). Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochimica et Cosmochimica Acta, 72(14), 3358–3370.

    CAS  Google Scholar 

  • Duckworth, O. W., Holmström, S. J., Peña, J., & Sposito, G. (2009). Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chemical Geology, 260(3–4), 149–158.

    CAS  Google Scholar 

  • Edwards, K. J., Rogers, D. R., Wirsen, C. O., & McCollom, T. M. (2003). Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α-and γ-Proteobacteria from the deep sea. Applied and Environmental Microbiology, 69(5), 2906–2913.

    CAS  Google Scholar 

  • Emerson, D. (2012). Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochemical Society Transactions, 40, 1211–1216.

    CAS  Google Scholar 

  • Emerson, D., & de Vet, W. (2015). The role of FeOB in engineered water ecosystems: A review. Journal-American Water Works Association, 107, E47–E57.

    Google Scholar 

  • Emerson, D., Fleming, E. J., & McBeth, J. M. (2010). Iron-oxidizing bacteria: An environmental and genomic perspective. Annual Review of Microbiology, 64, 561–583.

    CAS  Google Scholar 

  • Emerson, D., & Floyd, M. M. (2005). Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Methods in Enzymology, 397, 112–123.

    CAS  Google Scholar 

  • Emerson, D., & Moyer, C. (1997). Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Applied and Environmental Microbiology, 63(12), 4784–4792.

    CAS  Google Scholar 

  • Emerson, D., & Weiss, J. V. (2004). Bacterial iron oxidation in circumneutral freshwater habitats: Findings from the field and the laboratory. Geomicrobiology Journal, 21(6), 405–414.

    CAS  Google Scholar 

  • Emerson, D., Weiss, J. V., & Megonigal, J. P. (1999). Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plant. Applied and Environmental Microbiology, 65(6), 2758–2761.

    CAS  Google Scholar 

  • Faivre, D. (2016). Iron oxides: From nature to applications. Hoboken: Wiley.

    Google Scholar 

  • Fleming, E. J., Cetinić, I., Chan, C. S., King, D. W., & Emerson, D. (2014). Ecological succession among iron-oxidizing bacteria. The ISME Journal, 8(4), 804.

    CAS  Google Scholar 

  • Hassan, Z., Sultana, M., Westerhoff, H. V., Khan, S. I., & Roling, W. F. (2016). Iron cycling potentials of arsenic contaminated groundwater in bangladesh as revealed by enrichment cultivation. Geomicrobiology Journal, 33(9), 779–792.

    CAS  Google Scholar 

  • He, S. M., Tominski, C., Kappler, A., Behrens, S., & Roden, E. E. (2016). Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS. Applied and Environmental Microbiology, 82(9), 2656–2668.

    CAS  Google Scholar 

  • Hori, T., Müller, A., Igarashi, Y., Conrad, R., & Friedrich, M. W. (2010). Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. The ISME Journal, 4(2), 267.

    CAS  Google Scholar 

  • Jin, J., Wu, G., & Guan, Y. (2015). Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Research, 71, 207–218.

    CAS  Google Scholar 

  • Kappler, A., & Newman, D. K. (2005). Formation of Fe(III)-minerlas by Fe(II)-oxidizing photoautotrophic bacteria. Geochimica et Cosmochimica Acta, 68(6), 1217–1226.

    Google Scholar 

  • Kappler, A., Schink, B., & Newman, D. K. (2005). Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology, 3(4), 235–245.

    CAS  Google Scholar 

  • Kato, S., Chan, C., Itoh, T., & Ohkuma, M. (2013). Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Applied and Environmental Microbiology, 79(17), 5283–5290.

    CAS  Google Scholar 

  • Khalifa, A., Nakasuji, Y., Saka, N., Honjo, H., Asakawa, S., & Watanabe, T. (2018). Ferrigenium kumadai gen. nov., sp. nov., a microaerophilic iron-oxidizing bacterium isolated from a paddy field soil. International Journal of Systematic and Evolutionary Microbiology, 68(8), 2587–2592.

    CAS  Google Scholar 

  • Kumarathilaka, P., Seneweera, S., Meharg, A., & Bundschuh, J. (2018). Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors—A review. Water Research, 140, 403–414.

    CAS  Google Scholar 

  • Kyuma, K. (2004). Paddy soil science. Kyoto: Kyoto University Press.

    Google Scholar 

  • Larese-Casanova, P., Haderlein, S. B., & Kappler, A. (2010). Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochimica et Cosmochimica Acta, 74(13), 3721–3734.

    CAS  Google Scholar 

  • Laufer, K., Nordhoff, M., Halama, M., Martinez, R. E., Obst, M., Nowak, M., et al. (2017). Microaerophilic Fe(II)-oxidizing Zetaproteobacteria isolated from low-Fe marine coastal sediments: Physiology and composition of their twisted stalks. Applied and Environmental Microbiology, 83(8), e03118-03116.

    Google Scholar 

  • Laufer, K., Nordhoff, M., Røy, H., Schmidt, C., Behrens, S., Jørgensen, B. B., et al. (2016). Coexistence of microaerophilic, nitrate-reducing, and phototrophic Fe(II) oxidizers and Fe(III) reducers in coastal marine sediment. Applied and Environmental Microbiology, 82(5), 1433–1447.

    CAS  Google Scholar 

  • Li, S., Li, X., & Li, F. (2018). Fe(II) oxidation and nitrate reduction by a denitrifying bacterium, Pseudomonas stutzeri LS-2, isolated from paddy soil. Journal of Soils and Sediments, 18(4), 1668–1678.

    CAS  Google Scholar 

  • Li, X., Mou, S., Chen, Y., Liu, T., Dong, J., & Li, F. (2019a). Microaerobic Fe(II) oxidation coupled to carbon assimilation processes driven by microbes from paddy soil. Science China Earth Sciences, 62, 1719–1729.

    CAS  Google Scholar 

  • Li, H., Peng, J., Weber, K. A., & Zhu, Y. (2011). Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: Enrichment cultures with different short-chain fatty acids as electron donors. Journal of Soils and Sediments, 11(7), 1234.

    CAS  Google Scholar 

  • Li, C., Zhu, L., Pan, D., Li, S., Xiao, H., Zhang, Z., et al. (2019b). Siderophore-mediated iron acquisition enhances resistance to oxidative and aromatic compound stress in Cupriavidus necator JMP134. Applied and Environmental Microbiology, 85(1), e01938-01918.

    Google Scholar 

  • Liesack, W., Schnell, S., & Revsbech, N. P. (2000). Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 24(5), 625–645.

    CAS  Google Scholar 

  • Lin, C., Larsen, E. I., Nothdurft, L. D., & Smith, J. J. (2012). Neutrophilic, microaerophilic Fe(II)-oxidizing bacteria are ubiquitous in aquatic habitats of a subtropical Australian coastal catchment (ubiquitous FeOB in catchment aquatic habitats. Geomicrobilogy Journal, 29, 76–87.

    CAS  Google Scholar 

  • Liu, J., Hua, Z., Chen, L., Kuang, J., Li, S., Shu, W., et al. (2014). Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings. Applied and Environmental Microbiology, 80, 3677–3686.

    Google Scholar 

  • Lovley, D. R., Phillips, E. J., & Lonergan, D. J. (1989). Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Applied and Environmental Microbiology, 55(3), 700–706.

    CAS  Google Scholar 

  • Lueder, U., Druschel, G., Emerson, D., Kappler, A., & Schmidt, C. (2018). Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic iron(II)-oxidizing bacteria. FEMS Microbiology Ecology, 94(2), fix177.

    Google Scholar 

  • Maisch, M., Lueder, U., Kappler, A., & Schmidt, C. (2019a). Iron lung: How rice roots induce iron redox changes in the rhizosphere and create niches for microaerophilic Fe(II)-oxidizing bacteria. Environmental Science & Technology Letters, 6, 600–605.

    CAS  Google Scholar 

  • Maisch, M., Lueder, U., Laufer, K., Scholze, C., Kappler, A., & Schmidt, C. (2019b). Contribution of microaerophilic iron(II)-oxidizers to iron(III) mineral formation. Environmental Science and Technology, 53, 8197–8204.

    CAS  Google Scholar 

  • Männistö, M. K., Tiirola, M. A., & Puhakka, J. A. (2001). Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation, 12(5), 291–301.

    Google Scholar 

  • Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C., & Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12(12), 797–808.

    CAS  Google Scholar 

  • Muehe, E. M., Gerhardt, S., Schink, B., & Kappler, A. (2009). Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitratereducing bacteria. FEMS Microbiology Ecology, 70(3), 335–343.

    CAS  Google Scholar 

  • Naruse, T., Ban, Y., Yoshida, T., Kato, T., Namikawa, M., Takahashi, T., et al. (2019). Community structure of microaerophilic iron-oxidizing bacteria in Japanese paddy field soils. Soil Science and Plant Nutrition, 65(5), 460–470.

    CAS  Google Scholar 

  • Neubauer, S. C., Emerson, D., & Megonigal, J. P. (2002). Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Applied and Environmental Microbiology, 83(13), e00752-17.

    Google Scholar 

  • Nordhoff, M., Tominski, C., Halama, M., Byrne, J., Obst, M., Kleindienst, S., et al. (2017). Insights into nitrate-reducing Fe(II) oxidation mechanisms by analyzing cell-mineral associations, cell encrustation and mineralogy in the chemolithoautotrophic enrichment culture KS. Applied and Environmental Microbiology, 68(8), 3988–3995.

    Google Scholar 

  • Otte, J. M., Harter, J., Laufer, K., Blackwell, N., Straub, D., Kappler, A., et al. (2018). The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environmental Microbiology, 20(7), 2483–2499.

    CAS  Google Scholar 

  • Picardal, F. W., Zaybak, Z., Chakraborty, A., Schieber, J., & Szewzyk, U. (2011). Microaerophilic, Fe(II)-dependent growth and Fe(II) oxidation by a Dechlorospirillum species. FEMS Microbiology Letters, 319(1), 51–57.

    CAS  Google Scholar 

  • Przybylski, D., Rohwerder, T., Dilßner, C., Maskow, T., Harms, H., & Müller, R. H. (2015). Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Applied Microbiology and Biotechnology, 99(5), 2131–2145.

    CAS  Google Scholar 

  • Satola, B., Wübbeler, J. H., & Steinbüchel, A. (2013). Metabolic characteristics of the species Variovorax paradoxus. Applied Microbiology and Biotechnology, 97(2), 541–560.

    CAS  Google Scholar 

  • Schädler, S., Burkhardt, C., Hegler, F., Straub, K., Miot, J., Benzerara, K., et al. (2009). Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiology Journal, 26(2), 93–103.

    Google Scholar 

  • Shelobolina, E. S., Konishi, H., Xu, H., Benzine, J., Xiong, M. Y., Wu, T., et al. (2012). Isolation of phyllosilicate-iron redox cycling microorganisms from an illite–smectite rich hydromorphic soil. Frontiers in Microbiology, 3, 134.

    Google Scholar 

  • Stein, L. Y., La Duc, M. T., Grundl, T. J., & Nealson, K. H. (2001). Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environmental Microbiology, 3(1), 10–18.

    CAS  Google Scholar 

  • Straub, K. L., Benz, M., Schink, B., & Widdel, F. (1996). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62(4), 1458–1460.

    CAS  Google Scholar 

  • Swanner, E. D., Nell, R. M., & Templeton, A. S. (2011). Ralstonia species mediate Fe-oxidation in circumneutral, metal-rich subsurface fluids of Henderson mine, CO. Chemical Geology, 284(3–4), 33–350.

    Google Scholar 

  • Tong, H., Chen, M., Li, F., Liu, C., & Liao, C. (2017). Changes in the microbial community during repeated anaerobic microbial dechlorination of pentachlorophenol. Biodegradation, 28, 219–230.

    CAS  Google Scholar 

  • Tong, H., Liu, C., Hao, L., Swanner, E. D., Chen, M., Li, F., et al. (2019). Biological Fe(II) and As(III) oxidation immobilizes arsenic in micro-oxic environments. Geochimica et Cosmochimica Acta, 265, 96–108.

    CAS  Google Scholar 

  • Wang, J. (2011). Ecology of neutrophilic iron-oxidizing bacteria in wetland soils. Ph.D. thesis, University of Utrecht, Utrecht.

  • Wang, J., Muyzer, G., Bodelier, P. L., & Laanbroek, H. J. (2009). Diversity of iron oxidizers in wetland soils revealed by novel 16S rRNA primers targeting Gallionella-related bacteria. The ISME Journal, 3(6), 715.

    CAS  Google Scholar 

  • Wang, J., Vollrath, S., Behrends, T., Bodelier, P. L., Muyzer, G., Meima-Franke, M., et al. (2011). Distribution and diversity of Gallionella-like neutrophilic iron oxidizers in a tidal freshwater marsh. Applied and Environmental Microbiology, 77(7), 2337–2344.

    CAS  Google Scholar 

  • Weiss, J. V., Rentz, J. A., Plaia, T., Neubauer, S. C., Merrill-Floyd, M., Lilburn, T., et al. (2007). Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiology Journal, 24(7–8), 559–570.

    CAS  Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., & Schink, B. (1993). Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362(6423), 834.

    CAS  Google Scholar 

  • Xiu, W., Guo, H., Liu, Q., Liu, Z., & Zhang, B. (2015). Arsenic removal and transformation by Pseudomonas sp. strain GE-1-induced ferrihydrite: co-precipitation versus adsorption. Water, Air, and Soil pollution, 226(6), 167.

    Google Scholar 

  • Yu, R., Gan, P., MacKay, A. A., Zhang, S., & Smets, B. F. (2009). Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface. FEMS Microbiology Ecology, 71, 260–271.

    Google Scholar 

  • Yu, J., Dow, A., & Pingali, S. (2013). The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. International Journal of Hydrogen Energy, 38(21), 8683–8690.

    CAS  Google Scholar 

  • Yu, H., Wang, X., Li, F., Li, B., Liu, C., Wamg, Q., et al. (2017). Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Environmental Pollution, 224, 136–147.

    CAS  Google Scholar 

  • Zecchin, S., Colombo, M., & Cavalca, L. (2019). Exposure to different arsenic species drives the establishment of iron-and sulfur-oxidizing bacteria on rice root iron plaques. World Journal of Microbiology & Biotechnology, 35(8), 117.

    Google Scholar 

  • Zhen, Z., Weimin, Q., Can, X., Xuelian, S., Dalong, H., & Luochun, W. (2014). A micro-aerobic hydrolysis process for sludge in situ reduction: Performance and microbial community structure. Bioresource Technology, 173, 452–456.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Longfei Jiang from Guangzhou Institute of Geochemistry, Chinese Academy of Sciences for sequence analysis. This research was supported by GDAS’ Project of Science and Technology Development (2020GDASYL-20200402003 and 2019GDASYL-0301002), the National Science Foundation of China (41977291, 41603127, and 41921004), the Science and Technology Foundation of Guangdong, China (2019A1515011482).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshuai Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, H., Chen, M., Lv, Y. et al. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil. Environ Geochem Health 43, 1305–1317 (2021). https://doi.org/10.1007/s10653-020-00725-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00725-w

Keywords

Navigation