Skip to main content
Log in

Random Distribution of EFG Parameters in 27Al MAS NMR Spectra of AlO x /SiO2 Catalysts and Related Systems

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

27Al magic angle spinning (MAS) nuclear amgnetic resonance (NMR) spectroscopy is one of the primary tools in the structural characterization of a variety of alumina-based catalysts. However, the controversy still exists on the proper interpretation of 27Al NMR spectra due to difficulties associated with distribution of NMR parameters and by the experimental limitations. In this work, we present analysis of the 27Al MAS NMR spectra containing signals from Al(4), Al(5) and Al(6) species on the surface of AlO x /SiO2 catalysts and demonstrate several characteristic tell-tale properties of these signals caused by the random distribution of the EFG tensor parameters and by the partial excitation of NMR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.P.M. Kentgens, Geoderma 80, 271 (1997)

    Article  Google Scholar 

  2. M.E. Smith, E.R.H. van Eck, Prog. Nucl. Magn. Reson. Spectrosc. 34, 159 (1999)

    Article  Google Scholar 

  3. P.P. Man, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2006)

  4. J.W. Hennel, J. Klinowski, in Topics in Current Chemistry. New Tech. Solid-State NMR, vol. 246, ed. by J. Klinowski (Springer, Berlin, Heidelberg, 2005), pp. 1–14

    Chapter  Google Scholar 

  5. C. Fernandez, M. Pruski, in Topics in Current Chemistry. Solid State NMR, vol 306, ed. by J.C.C. Chan (Springer, Berlin, Heidelberg, 2012), pp. 119–188

  6. R.E. Wasylishen, S.E. Ashbrook, S. Wimperis (eds.), NMR of Quadrupolar Nuclei in Solid Materials (Wiley, The Atrium, Southern Gate, Chichester, 2012)

    Google Scholar 

  7. X. Gao, I.E. Wachs, J. Catal. 192, 18 (2000)

    Article  Google Scholar 

  8. Z. Gan, H.-T. Kwak, J. Magn. Reson. 168, 346 (2004)

    Article  ADS  Google Scholar 

  9. J.P. Amoureux, L. Delevoye, S. Steuernagel, Z. Gan, S. Ganapathy, L. Montagne, J. Magn. Reson. 172, 268 (2005)

    Article  ADS  Google Scholar 

  10. R. Hajjar, Y. Millot, P.P. Man, Prog. Nucl. Magn. Reson. Spectrosc. 57, 306 (2010)

    Article  Google Scholar 

  11. I. Hung, J. Trébosc, G.L. Hoatson, R.L. Vold, J.-P. Amoureux, Z. Gan, J. Magn. Reson. 201, 81 (2009)

    Article  ADS  Google Scholar 

  12. A.A. Shubin, O.B. Lapina, G.M. Zhidomirov, in IX-Th Ampere Summer School Abstracts Novosibirsk, 2026 Sept (Novosibirsk, 1987), p. 103

  13. G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. Coey, J.-P. Rebouillat, A. Liénard, Phys. Rev. B 23, 2513 (1981)

    Article  ADS  Google Scholar 

  14. G. Le Caër, R.A. Brand, J. Phys.: Condens. Matter 10, 10715 (1998)

    Google Scholar 

  15. J.-B. d’Espinose de Lacaillerie, C. Fretigny, D. Massiot, J. Magn. Reson. 192, 244 (2008)

    Article  ADS  Google Scholar 

  16. G. Le Caër, B. Bureau, D. Massiot, J. Phys.: Condens. Matter 22, 065402 (2010)

    ADS  Google Scholar 

  17. F. Vasconcelos, S. Cristol, J.-F. Paul, L. Delevoye, F. Mauri, T. Charpentier, G. Le Caër, J. Phys.: Condens. Matter 25, 255402 (2013)

    ADS  Google Scholar 

  18. A. Samoson, Chem. Phys. Lett. 119, 29 (1985)

    Article  ADS  Google Scholar 

  19. P.P. Man, Phys. Rev. B 55, 8406 (1997)

    Article  ADS  Google Scholar 

  20. K.J.D. MacKenzie, M.E. Smith, Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials, Pergamon Materials Series, vol. 6 (Pergamon/Elsevier, Oxford, 2002)

    Google Scholar 

  21. R. Wischert, P. Florian, C. Copéret, D. Massiot, P. Sautet, J. Phys. Chem. C 118, 15292 (2014)

    Article  Google Scholar 

  22. Y. Ledemi, B. Bureau, G. Le Caër, L. Calvez, C. Roiland, G. Tricot, P. Florian, V. Nazabal, D. Massiot, J. Non. Cryst. Solids 383, 216 (2014)

    Article  ADS  Google Scholar 

  23. A. Medek, J.S. Harwood, L. Frydman, J. Am. Chem. Soc. 117, 12779 (1995)

    Article  Google Scholar 

  24. J.-P. Amoureux, C. Fernandez, L. Frydman, Chem. Phys. Lett. 259, 347 (1996)

    Article  ADS  Google Scholar 

  25. J. Jiao, J. Kanellopoulos, W. Wang, S.S. Ray, H. Foerster, D. Freude, M. Hunger, Phys. Chem. Chem. Phys. 7, 3221 (2005)

    Article  Google Scholar 

  26. X. Pardal, F. Brunet, T. Charpentier, I. Pochard, A. Nonat, Inorg. Chem. 51, 1827 (2012)

    Article  Google Scholar 

  27. A. Lesage, M. Lelli, D. Gajan, M.A. Caporini, V. Vitzthum, P. Miéville, J. Alauzun, A. Roussey, C. Thieuleux, A. Mehdi, G. Bodenhausen, C. Coperet, L. Emsley, J. Am. Chem. Soc. 132, 15459 (2010)

    Article  Google Scholar 

  28. A.J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret, L. Emsley, Acc. Chem. Res. 46, 1942 (2013)

    Article  Google Scholar 

  29. M. Valla, A.J. Rossini, M. Caillot, C. Chizallet, P. Raybaud, M. Digne, A. Chaumonnot, A. Lesage, L. Emsley, J.A. van Bokhoven, C. Copéret, J. Am. Chem. Soc. 137, 10710 (2015)

    Article  Google Scholar 

  30. A.L. Blumenfeld, J.J. Fripiat, Top. Catal. 4, 119 (1997)

    Article  Google Scholar 

  31. M. Baca, E. de la Rochefoucauld, E. Ambroise, J.-M. Krafft, R. Hajjar, P.P. Man, X. Carrier, J. Blanchard, Microporous Mesoporous Mater. 110, 232 (2008)

    Article  Google Scholar 

  32. D. Iuga, S. Simon, E. de Boer, A.P.M. Kentgens, J. Phys. Chem. B 103, 7591 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

Russian authors gratefully acknowledge the Russian Science Foundation (RSF Grant 14-23-00037) for the financial support. Dr. Z. Gan (NHMF, Florida) is thanked for his help with MQMAS experiments. Prof. I. Wachs is thanked for supplying the samples. Access to the 21.1 T NMR spectrometer was provided by the National Ultrahigh-Field NMR Facility for Solids (Ottawa, Canada), a national research facility funded by a consortium of Canadian Universities, supported by the National Research Council Canada and Bruker BioSpin, and managed by the University of Ottawa (http://nmr900.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr A. Shubin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubin, A.A., Terskikh, V.V., Papulovskiy, E. et al. Random Distribution of EFG Parameters in 27Al MAS NMR Spectra of AlO x /SiO2 Catalysts and Related Systems. Appl Magn Reson 47, 1193–1205 (2016). https://doi.org/10.1007/s00723-016-0837-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-016-0837-x

Navigation