Skip to main content

Advertisement

Log in

Combined effect of interventions with pure or enriched mixtures of (poly)phenols and anti-diabetic medication in type 2 diabetes management: a meta-analysis of randomized controlled human trials

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

(Poly)phenols have been reported to confer protective effects against type 2 diabetes but the precise association remains elusive. This meta-analysis aimed to assess the effects of (poly)phenol intake on well-established biomarkers in people with type 2 diabetes or at risk of developing diabetes.

Methods

A systematic search was conducted using the following selection criteria: (1) human randomized controlled trials involving individuals with prediabetes and type 2 diabetes; (2) one or more of the following biomarkers: glucose, glycated haemoglobin (HbA1c), insulin, pro-insulin, homeostatic model assessment of insulin resistance (HOMA-IR), islet amyloid polypeptide (IAPP)/amylin, pro-IAPP/pro-amylin, glucagon, C-peptide; (3) chronic intervention with pure or enriched mixtures of (poly)phenols. From 488 references, 88 were assessed for eligibility; data were extracted from 27 studies and 20 were used for meta-analysis. The groups included in the meta-analysis were: (poly)phenol mixtures, isoflavones, flavanols, anthocyanins and resveratrol.

Results

Estimated intervention/control mean differences evidenced that, overall, the consumption of (poly)phenols contributed to reduced fasting glucose levels (− 3.32 mg/dL; 95% CI − 5.86, − 0.77; P = 0.011). Hb1Ac was only slightly reduced (− 0.24%; 95% CI − 0.43, − 0.044; P = 0.016) whereas the levels of insulin and HOMA-IR were not altered. Subgroup comparative analyses indicated a stronger effect on blood glucose in individuals with diabetes (− 5.86 mg/dL, 95% CI − 11.34, − 0.39; P = 0.036) and this effect was even stronger in individuals taking anti-diabetic medication (− 10.17 mg/dL, 95% CI − 16.59, − 3.75; P = 0.002).

Conclusions

Our results support that the consumption of (poly)phenols may contribute to lower glucose levels in individuals with type 2 diabetes or at risk of diabetes and that these compounds may also act in combination with anti-diabetic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The total number of studies is equal to 21 because one of the studies depicts results from 2 interventions (a (poly)phenol mixture and resveratrol).

References

  1. Cavan D, da Rocha Fernandes J, Makaroff L, Ogurtsova K, Webber S (2015) IDF diabetes atlas, Brussels: international diabetes federation, pp 12–19

  2. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. https://doi.org/10.1038/nature05616

    Article  PubMed  Google Scholar 

  3. Hu FB, Manson JE, Stampfer MJ et al (2002) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. Obstet Gynecol Surv. https://doi.org/10.1097/00006254-200203000-00018

    Article  Google Scholar 

  4. Wing RR, Lang W, Wadden TA et al (2011) Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. https://doi.org/10.2337/dc10-2415

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3–19

    Article  CAS  Google Scholar 

  6. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  CAS  Google Scholar 

  7. Bergman RN, Finegood DT, Kahn SE (2003) The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Investig. https://doi.org/10.1046/j.1365-2362.32.s3.5.x

    Article  Google Scholar 

  8. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. https://doi.org/10.1152/physrev.00042.2009

    Article  PubMed  Google Scholar 

  9. Leighton E, Sainsbury CA, Jones GC (2017) A practical review of C-peptide testing in diabetes. Diabetes Ther 8:475–487

    Article  CAS  Google Scholar 

  10. Westermark P, Grimelius L (1973) The pancreatic islet cells in insular amyloidosis in human diabetic and non-diabetic adults. Acta Pathol Microbiol Scand Sect A Pathol. https://doi.org/10.1111/j.1699-0463.1973.tb03538.x

    Article  Google Scholar 

  11. Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 46:1725–1732

    Article  CAS  Google Scholar 

  12. Paulsson JF, Andersson A, Westermark P, Westermark GT (2006) Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets. Diabetologia. https://doi.org/10.1007/s00125-006-0206-7

    Article  PubMed  Google Scholar 

  13. Godoy-Matos AF (2014) The role of glucagon on type 2 diabetes at a glance. Diabetol Metab Syndr 6:91

    Article  Google Scholar 

  14. Bravo L (2010) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

    Article  Google Scholar 

  15. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    Article  Google Scholar 

  16. García-Lafuente A, Guillamón E, Villares A et al (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552

    Article  Google Scholar 

  17. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2008) Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 33:2416–2426

    Article  CAS  Google Scholar 

  18. Silveira AC, Dias JP, Santos VM et al (2018) The action of polyphenols in diabetes mellitus and Alzheimer’s disease: a common agent for overlapping pathologies. Curr Neuropharmacol. https://doi.org/10.2174/1570159x16666180803162059

    Article  Google Scholar 

  19. Harding AH, Wareham NJ, Bingham SA et al (2008) Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus. The European prospective investigation of Cancer-Norfolk prospective study. Arch Intern Med. https://doi.org/10.1001/archinte.168.14.1493

    Article  PubMed  Google Scholar 

  20. Ford ES, Mokdad AH (2001) Fruit and vegetable consumption and diabetes mellitus incidence among U.S. adults. Prev Med (Baltim). https://doi.org/10.1006/pmed.2000.0772

    Article  Google Scholar 

  21. Tresserra-Rimbau A, Guasch-Ferré M et al (2015) Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr. https://doi.org/10.3945/jn.115.223610

    Article  Google Scholar 

  22. Grosso G, Stepaniak U, Micek A et al (2017) Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr. https://doi.org/10.1007/s00394-016-1187-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nguyen CT, Pham NM, Do VV et al (2017) Soyfood and isoflavone intake and risk of type 2 diabetes in Vietnamese adults. Eur J Clin Nutr. https://doi.org/10.1038/ejcn.2017.76

    Article  PubMed  Google Scholar 

  24. Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383:1999–2007

    Article  CAS  Google Scholar 

  25. Törrönen R, Sarkkinen E, Tapola N et al (2010) Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br J Nutr. https://doi.org/10.1017/S0007114509992868

    Article  PubMed  Google Scholar 

  26. Hosoda K, Wang MF, Liao ML et al (2003) Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care. https://doi.org/10.2337/diacare.26.6.1714

    Article  PubMed  Google Scholar 

  27. Luo C, Yang H, Tang C et al (2015) Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2015.07.018

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahad A, Ganai AA, Mujeeb M, Siddiqui WA (2014) Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact. https://doi.org/10.1016/j.cbi.2014.05.011

    Article  PubMed  Google Scholar 

  29. Radovan D, Opitz N, Winter R (2009) Fluorescence microscopy studies on islet amyloid polypeptide fibrillation at heterogeneous and cellular membrane interfaces and its inhibition by resveratrol. FEBS Lett. https://doi.org/10.1016/j.febslet.2009.03.059

    Article  PubMed  Google Scholar 

  30. Bruno E, Pereira C, Roman KP et al (2013) IAPP aggregation and cellular toxicity are inhibited by 1,2,3,4,6-penta-O-galloyl-β-d-glucose. Amyloid. https://doi.org/10.3109/13506129.2012.762761

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huxley R, Lee CMY, Barzi F et al (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med 169:2053–2063

    Article  Google Scholar 

  32. Liu K, Zhou R, Wang B et al (2013) Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am J Clin Nutr. https://doi.org/10.3945/ajcn.112.052746

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng XX, Xu YL, Li SH et al (2013) Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. Am J Clin Nutr. https://doi.org/10.3945/ajcn.111.032573

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pham NM, Van DV, Lee AH (2019) Polyphenol-rich foods and risk of gestational diabetes: a systematic review and meta-analysis. Eur J Clin Nutr 73:647–656

    Article  CAS  Google Scholar 

  35. Rienks J, Barbaresko J, Oluwagbemigun K et al (2018) Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 108:49–61

    Article  Google Scholar 

  36. Palma-Duran SA, Vlassopoulos A, Lean M et al (2017) Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: systematic review and meta-analysis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2014.973932

    Article  PubMed  Google Scholar 

  37. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. https://doi.org/10.1016/j.jclinepi.2009.06.006

    Article  PubMed  Google Scholar 

  38. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. Cochrane Collab. https://doi.org/10.1002/9780470712184.ch4

    Article  Google Scholar 

  39. Menezes R, Rodriguez-Mateos A, Kaltsatou A et al (2017) Impact of flavonols on cardiometabolic biomarkers: a meta-analysis of randomized controlled human trials to explore the role of inter-individual variability. Nutrients 9:117

    Article  Google Scholar 

  40. Haidich AB (2010) Meta-analysis in medical research. Hippokratia 14:29

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Spadea L, Balestrazzi E (2001) Treatment of vascular retinopathies with Pycnogenol®. Phyther Res. https://doi.org/10.1002/ptr.853

    Article  Google Scholar 

  42. Brasnyó P, Molnár GA, Mohás M et al (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr. https://doi.org/10.1017/S0007114511000316

    Article  PubMed  Google Scholar 

  43. Poulsen MM, Vestergaard PF, Clasen BF et al (2013) High-dose resveratrol supplementation in obese men an investigator- initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes. https://doi.org/10.2337/db12-0975

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bo S, Ponzo V, Ciccone G et al (2016) Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial. Pharmacol Res. https://doi.org/10.1016/j.phrs.2016.08.010

    Article  PubMed  Google Scholar 

  45. Goh KP, Lee HY, Lau DP et al (2014) Effects of resveratrol in patients with type 2 diabetes mellitus on skeletal muscle SIRT1 expression and energy expenditure. Int J Sport Nutr Exerc Metab. https://doi.org/10.1123/ijsnem.2013-0045

    Article  PubMed  Google Scholar 

  46. Bozzetto L, Annuzzi G, Pacini G et al (2015) Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial. Diabetologia. https://doi.org/10.1007/s00125-015-3592-x

    Article  PubMed  Google Scholar 

  47. Squadrito F, Marini H, Bitto A et al (2013) Genistein in the metabolic syndrome: results of a randomized clinical trial. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2013-1180

    Article  PubMed  Google Scholar 

  48. Liu ZM, Chen YM, Ho SC et al (2010) Effects of soy protein and isoflavones on glycemic control and insulin sensitivity: a 6-mo double-blind, randomized, placebo-controlled trial in postmenopausal Chinese women with prediabetes or untreated early diabetes. Am J Clin Nutr. https://doi.org/10.3945/ajcn.2009.28813

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hokayem M, Blond E, Vidal H et al (2013) Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. https://doi.org/10.2337/dc12-1652

    Article  PubMed  PubMed Central  Google Scholar 

  50. Woerdeman J, Del Rio D, Calani L et al (2018) Red wine polyphenols do not improve obesity-associated insulin resistance: a randomized controlled trial. Diabetes Obes Metab. https://doi.org/10.1111/dom.13044

    Article  PubMed  Google Scholar 

  51. Brown AL, Lane J, Coverly J et al (2009) Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br J Nutr. https://doi.org/10.1017/S0007114508047727

    Article  PubMed  Google Scholar 

  52. Shoji T, Yamada M, Miura T et al (2017) Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: a randomised, placebo-controlled trial. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2017.03.028

    Article  PubMed  Google Scholar 

  53. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ et al (2013) One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. https://doi.org/10.1016/j.phrs.2013.03.011

    Article  PubMed  Google Scholar 

  54. Jayagopal V, Albertazzi P, Kilpatrick ES et al (2002) Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care. https://doi.org/10.2337/diacare.25.10.1709

    Article  PubMed  Google Scholar 

  55. Setchell KDR, Nardi E, Battezzati PM et al (2013) Novel soy germ pasta enriched in isoflavones ameliorates gastroparesis in type 2 diabetes: a pilot study. Diabetes Care. https://doi.org/10.2337/dc12-1615

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gonźalez S, Jayagopal V, Kilpatrick ES et al (2007) Effects of isoflavone dietary supplementation on cardiovascular risk factors in type 2 diabetes. Diabetes Care. https://doi.org/10.2337/dc06-1814

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hsu CH, Liao YL, Lin SC et al (2011) Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Altern Med Rev 16:157–163

    Article  Google Scholar 

  58. Nagao T, Meguro S, Hase T et al (2009) A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity. https://doi.org/10.1038/oby.2008.505

    Article  PubMed  Google Scholar 

  59. Liu Y, Xia M, Sun R et al (2015) Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. J Nutr. https://doi.org/10.3945/jn.114.205674

    Article  PubMed  PubMed Central  Google Scholar 

  60. Raju NN, Reddy KK, Kumari KK et al (2013) Efficacy of purple passion fruit peel extract in lowering cardiovascular risk factors in type 2 diabetic subjects. J Evid Based Complement Altern Med. https://doi.org/10.1177/2156587213475627

    Article  Google Scholar 

  61. Zibadi S, Rohdewald PJ, Park D, Watson RR (2008) Reduction of cardiovascular risk factors in subjects with type 2 diabetes by Pycnogenol supplementation. Nutr Res. https://doi.org/10.1016/j.nutres.2008.03.003

    Article  PubMed  Google Scholar 

  62. Thazhath SS, Wu T, Bound MJ et al (2016) Administration of resveratrol for 5 wk has no effect on glucagon-like peptide 1 secretion, gastric emptying, or glycemic control in type 2 diabetes: a randomized controlled trial. Am J Clin Nutr. https://doi.org/10.3945/ajcn.115.117440

    Article  PubMed  Google Scholar 

  63. Nathan DM, Kuenen J, Borg R et al (2008) Translating the A1C assay into estimated average glucose values. Diabetes Care. https://doi.org/10.2337/dc08-0545

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alshammari N, Palma-Duran SA, Jiang G et al (2018) A systematic review and meta-analysis of randomized controlled trials exploring the role of inter-individual variability on the effect of flavanols on insulin and HOMA-IR. Proc Nutr Soc 77:E40. https://doi.org/10.1017/S0029665118000344

    Article  Google Scholar 

  65. Curtis PJ, Dhatariya K, Sampson M et al (2012) Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year, double-blind, randomized, controlled trial. Diabetes Care. https://doi.org/10.2337/dc11-1443

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hausenblas HA, Schoulda JA, Smoliga JM (2015) Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol Nutr Food Res 59:147–159

    Article  CAS  Google Scholar 

  67. Pimpão RC, Dew T, Figueira ME et al (2014) Urinary metabolite profiling identifies novel colonic metabolites and conjugates of phenolics in healthy volunteers. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201300822

    Article  PubMed  Google Scholar 

  68. Williamson G, Clifford MN (2017) Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem Pharmacol 139:24–39

    Article  CAS  Google Scholar 

  69. Carregosa D, Carecho RM, Figueira I, Santos CN (2019) Low molecular weight metabolites from polyphenols as effectors for attenuating neuroinflammation. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.9b02155

    Article  PubMed  Google Scholar 

  70. Álvarez-Cilleros D, Martín MÁ, Ramos S (2018) (−)-Epicatechin and the colonic 2,3-dihydroxybenzoic acid metabolite regulate glucose uptake, glucose production, and improve insulin signaling in renal NRK-52E cells. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700470

    Article  PubMed  Google Scholar 

  71. Gupta RC, Chang D, Nammi S et al (2017) Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 9:59

    Article  Google Scholar 

  72. Haritha C, Gopala Reddy A, Ramana Reddy Y, Anilkumar B (2015) Pharmacodynamic interaction of fenugreek, insulin and glimepiride on sero-biochemical parameters in diabetic Sprague-Dawley rats. Vet World. https://doi.org/10.14202/vetworld.2015.656-663

    Article  PubMed  PubMed Central  Google Scholar 

  73. Weaver CM, Miller JW (2017) Challenges in conducting clinical nutrition research. Nutr Rev. https://doi.org/10.1093/nutrit/nux026

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was conducted within COST Action FA1403—POSITIVe. iNOVA4Health—UID/Multi/04462/2019, a program financially supported by Fundação para a Ciência e Tecnologia (FCT)/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is acknowledged. Funding from INTERFACE Programme, through the Innovation, Technology and Circular Economy Fund (FITEC), is gratefully acknowledged. UIDP/04748/2020, a program financially supported by FCT is also acknowledged. This study was also supported by FCT via PTDC/BIA-MOL31104/2017 and UID/Multi/04462/2019-SubProj iNOVA4Health 44 to RM, SFRH/PD/BD/135504/2018 to AFR, SFRH/BPD/110426/2015 to RR. Sociedade Portuguesa de Diabetologia for the Nuno Castelo-Branco Prize—2016 attributed to RM and RR is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paula Pinto or Regina Menezes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimundo, A.F., Félix, F., Andrade, R. et al. Combined effect of interventions with pure or enriched mixtures of (poly)phenols and anti-diabetic medication in type 2 diabetes management: a meta-analysis of randomized controlled human trials. Eur J Nutr 59, 1329–1343 (2020). https://doi.org/10.1007/s00394-020-02189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02189-1

Keywords

Navigation