Skip to main content

Advertisement

Log in

AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response.

Methods

AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements.

Results

We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention.

Conclusion

This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The transcriptomic data for normal colorectal and CRC samples were obtained from TCGA database under the project ID: TCGA-COAD. The dataset is publicly accessible, and researchers can retrieve the information for further analyses from the TCGA data portal (https://portal.gdc.cancer.gov/).

References

  1. Cherri S, Oneda E, Zanotti L, Zaniboni A (2023) Optimizing the first-line treatment for metastatic colorectal cancer. Front Oncol 13:1246716. https://doi.org/10.3389/fonc.2023.1246716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodriguez Castells M et al (2023) The impact of clinical and translational research on the quality of life during the metastatic colorectal cancer patient journey. Front Oncol 13:1272561. https://doi.org/10.3389/fonc.2023.1272561

    Article  PubMed  PubMed Central  Google Scholar 

  3. Postwala H, Shah Y, Parekh PS, Chorawala MR (2023) Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Medical oncology (Northwood, London, England) 40, 334, https://doi.org/10.1007/s12032-023-02201-8

  4. Alrushaid N, Khan FA, Al-Suhaimi E, Elaissari A (2023) Progress and perspectives in Colon Cancer Pathology, diagnosis, and treatments. Dis (Basel Switzerland) 11. https://doi.org/10.3390/diseases11040148

  5. Gmeiner WH, Okechukwu CC (2023) Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects. Cancer drug Resist (Alhambra Calif) 6:257–272. https://doi.org/10.20517/cdr.2022.136

    Article  CAS  Google Scholar 

  6. Ma SC et al (2023) Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 12:11073–11096. https://doi.org/10.1002/cam4.5594

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zou Q et al (2022) Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Front Immunol 13:724139. https://doi.org/10.3389/fimmu.2022.724139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15:1137–1147. https://doi.org/10.1038/s41589-019-0408-1

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081. https://doi.org/10.1080/15548627.2020.1810918

    Article  CAS  PubMed  Google Scholar 

  11. Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22:381–396. https://doi.org/10.1038/s41568-022-00459-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang C, Liu X, Jin S, Chen Y, Guo R (2022) Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 21:47. https://doi.org/10.1186/s12943-022-01530-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826:129–169. https://doi.org/10.1016/j.bbcan.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chaudhary N et al (2021) Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer 149:1495–1511. https://doi.org/10.1002/ijc.33711

    Article  CAS  PubMed  Google Scholar 

  15. Yang C, Zhang Y, Lin S, Liu Y, Li W (2021) Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging 13:13515–13534. https://doi.org/10.18632/aging.202774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeng CM et al (2017) Aldo-Keto reductase AKR1C1-AKR1C4: functions, regulation, and intervention for anti-cancer therapy. Front Pharmacol 8:119. https://doi.org/10.3389/fphar.2017.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies NJ et al (2009) AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects. Cancer Res 69:4769–4775. https://doi.org/10.1158/0008-5472.can-08-4533

    Article  CAS  PubMed  Google Scholar 

  18. Byrns MC, Jin Y, Penning TM (2011) Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. J Steroid Biochem Mol Biol 125:95–104

    Article  CAS  PubMed  Google Scholar 

  19. Penning TM, Byrns MC (2009) Steroid hormone transforming aldo-keto reductases and cancer. Ann N Y Acad Sci 1155:33–42. https://doi.org/10.1111/j.1749-6632.2009.03700.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gagliardi M et al (2019) Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis 10. https://doi.org/10.1038/s41419-019-2143-7

  21. Huang F, Zheng Y, Li X, Luo H, Luo L (2021) Ferroptosis-related gene AKR1C1 predicts the prognosis of non-small cell lung cancer. Cancer Cell Int 21:567. https://doi.org/10.1186/s12935-021-02267-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian H et al (2016) High expression of AKR1C1 is associated with proliferation and migration of small-cell lung cancer cells. Lung Cancer (Auckland N Z) 7:53–61. https://doi.org/10.2147/lctt.S90694

    Article  CAS  PubMed  Google Scholar 

  23. Matsunaga T et al (2013) Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chemico-Biol Interact 202:234–242. https://doi.org/10.1016/j.cbi.2012.09.024

    Article  CAS  Google Scholar 

  24. Bortolozzi R et al (2018) AKR1C enzymes sustain therapy resistance in paediatric T-ALL. Br J Cancer 118:985–994. https://doi.org/10.1038/s41416-018-0014-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jamieson SM et al (2014) A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104A in human leukaemia cells. Biochem Pharmacol 88:36–45. https://doi.org/10.1016/j.bcp.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  26. Yee DJ, Balsanek V, Sames D (2004) New tools for molecular imaging of redox metabolism: development of a fluorogenic probe for 3 alpha-hydroxysteroid dehydrogenases. J Am Chem Soc 126:2282–2283. https://doi.org/10.1021/ja039799f

    Article  CAS  PubMed  Google Scholar 

  27. Yee DJ, Balsanek V, Bauman DR, Penning TM, Sames D (2006) Fluorogenic metabolic probes for direct activity readout of redox enzymes: selective measurement of human AKR1C2 in living cells. Proc Natl Acad Sci USA 103:13304–13309. https://doi.org/10.1073/pnas.0604672103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sinha BK et al (2023) Ferroptosis-Mediated Cell Death Induced by NCX4040, The Non-Steroidal Nitric Oxide Donor, in Human Colorectal Cancer Cells: Implications in Therapy. Cells 12, https://doi.org/10.3390/cells12121626

  29. Han Y et al (2022) Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis 13:742. https://doi.org/10.1038/s41419-022-05192-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu M et al (2022) RIP3 blockade prevents immune-mediated hepatitis through a myeloid-derived suppressor cell dependent mechanism. Int J Biol Sci 18:199–213. https://doi.org/10.7150/ijbs.65402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo C et al (2019) Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun 103. https://doi.org/10.1016/j.jaut.2019.05.014

  32. Zhang JS et al (2013) γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells. PLoS ONE 8:e57779. https://doi.org/10.1371/journal.pone.0057779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han B et al (2015) Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism. BMC Cancer 15. https://doi.org/10.1186/s12885-015-1133-0

  34. Xiang X et al (2021) Fangchinoline exerts anticancer effects on colorectal cancer by inducing autophagy via regulation AMPK/mTOR/ULK1 pathway. Biochem Pharmacol 186:114475. https://doi.org/10.1016/j.bcp.2021.114475

    Article  CAS  PubMed  Google Scholar 

  35. Jin Y et al (2001) Crystal structure of human type III 3alpha-hydroxysteroid dehydrogenase/bile acid binding protein complexed with NADP(+) and ursodeoxycholate. Biochemistry 40:10161–10168. https://doi.org/10.1021/bi010919a

    Article  CAS  PubMed  Google Scholar 

  36. Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40:553–624. https://doi.org/10.1080/03602530802431439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higaki Y et al (2003) Selective and potent inhibitors of human 20alpha-hydroxysteroid dehydrogenase (AKR1C1) that metabolizes neurosteroids derived from progesterone. Chemico-Biol Interact 143–144. https://doi.org/10.1016/s0009-2797(02)00206-5

  38. Endo S, Morikawa Y, Matsunaga T, Hara A, Nishinaka T (2022) Porcine aldo-keto reductase 1 C subfamily members AKR1C1 and AKR1C4: substrate specificity, inhibitor sensitivity and activators. J Steroid Biochem Mol Biol 221:106113. https://doi.org/10.1016/j.jsbmb.2022.106113

    Article  CAS  PubMed  Google Scholar 

  39. Penning TM, Jonnalagadda S, Trippier PC, Rižner TL (2021) Aldo-Keto reductases and Cancer Drug Resistance. Pharmacol Rev 73:1150–1171. https://doi.org/10.1124/pharmrev.120.000122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by “Basic Medicine Special Fund Project” at Qixia City People’s Hospital (Grant no. BMSFP2022066).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Li Wang, Cuiling Lv, and Xiaoxia Liu; Resources: Cuiling Lv, Xiaoxia Liu; Data curation: Xiaoxia Liu; Formal Analysis: Li Wang and Xiaoxia Liu; Supervision: Xiaoxia Liu; Validation: Li Wang, Cuiling Lv, and Xiaoxia Liu; Investigation: Li Wang and Xiaoxia Liu; Visualization: Xiaoxia Liu; Methodology: Li Wang, Cuiling Lv, and Xiaoxia Liu; Project administration: Xiaoxia Liu; Writing – original draft: Li Wang; Writing – review & editing: Li Wang, Cuiling Lv, and Xiaoxia Liu.

Corresponding author

Correspondence to Xiaoxia Liu.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lv, C. & Liu, X. AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation. Cancer Chemother Pharmacol (2024). https://doi.org/10.1007/s00280-024-04685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00280-024-04685-1

Keywords

Navigation