Skip to main content
Log in

IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Intrinsic disorder can be found in all proteomes of all kingdoms of life and in viruses, being particularly prevalent in the eukaryotes. We conduct a comprehensive analysis of the intrinsic disorder in the human proteins while mapping them into 24 compartments of the human cell. In agreement with previous studies, we show that human proteins are significantly enriched in disorder relative to a generic protein set that represents the protein universe. In fact, the fraction of proteins with long disordered regions and the average protein-level disorder content in the human proteome are about 3 times higher than in the protein universe. Furthermore, levels of intrinsic disorder in the majority of human subcellular compartments significantly exceed the average disorder content in the protein universe. Relative to the overall amount of disorder in the human proteome, proteins localized in the nucleus and cytoskeleton have significantly increased amounts of disorder, measured by both high disorder content and presence of multiple long intrinsically disordered regions. We empirically demonstrate that, on average, human proteins are assigned to 2.3 subcellular compartments, with proteins localized to few subcellular compartments being more disordered than the proteins that are localized to many compartments. Functionally, the disordered proteins localized in the most disorder-enriched subcellular compartments are primarily responsible for interactions with nucleic acids and protein partners. This is the first-time disorder is comprehensively mapped into the human cell. Our observations add a missing piece to the puzzle of functional disorder and its organization inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available in the Supplement.

References

  1. Levitt M (2009) Nature of the protein universe. Proc Natl Acad Sci USA 106(27):11079–11084

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nepomnyachiy S, Ben-Tal N, Kolodny R (2014) Global view of the protein universe. Proc Natl Acad Sci USA 111(32):11691–11696

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Han X et al (2019) A global map of the protein shape universe. PLoS Comput Biol 15(4):e1006969

    PubMed  PubMed Central  Google Scholar 

  4. Andreeva A et al (2014) SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res 42(Database issue):D310–D314

    CAS  PubMed  Google Scholar 

  5. Sillitoe I et al (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43(Database issue):D376–D381

    CAS  PubMed  Google Scholar 

  6. Kulkarni P, Uversky VN (2018) Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics 18(21–22):e1800061

    PubMed  Google Scholar 

  7. Hu G et al (2018) Taxonomic landscape of the dark proteomes: whole-proteome scale interplay between structural darkness, intrinsic disorder, and crystallization propensity. Proteomics 18:e1800243

    PubMed  Google Scholar 

  8. Bhowmick A et al (2016) Finding our way in the dark proteome. J Am Chem Soc 138(31):9730–9742

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieutaud P et al (2016) How disordered is my protein and what is its disorder for? a guide through the "dark side" of the protein universe. Intrinsically Disord Proteins 4(1):e1259708

    PubMed  PubMed Central  Google Scholar 

  10. Habchi J et al (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588

    CAS  PubMed  Google Scholar 

  11. van der Lee R et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    PubMed  PubMed Central  Google Scholar 

  12. Keith Dunker A, Barbar E, Blackledge M, Bondos SE, Zsuzsanna Dosztányi H, Dyson J, Forman-Kay J, Fuxreiter M, Gsponer J, Han KH, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu RV, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1(1):e24157

    PubMed  PubMed Central  Google Scholar 

  13. Oldfield CJ et al (2019) Introduction to intrinsically disordered proteins and regions. In: Salvi N (ed) Intrinsically disordered proteins. Academic Press, Cambridge, pp 1–34

    Google Scholar 

  14. Peng Z et al (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151

    CAS  PubMed  Google Scholar 

  15. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068

    PubMed  Google Scholar 

  16. Ward JJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    CAS  PubMed  Google Scholar 

  17. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    CAS  PubMed  Google Scholar 

  18. Schad E, Tompa P, Hegyi H (2011) The relationship between proteome size, structural disorder and organism complexity. Genome Biol 12(12):R120

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie H et al (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834(5):932–951

    CAS  PubMed  Google Scholar 

  21. Uversky VN (2013) The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 587(13):1891–1901

    CAS  PubMed  Google Scholar 

  22. Uversky VN (2016) p53 proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int J Mol Sci 17(11):1874

    PubMed Central  Google Scholar 

  23. Uversky VN (2015) Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 282(7):1182–1189

    CAS  PubMed  Google Scholar 

  24. Dunker AK et al (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    CAS  PubMed  Google Scholar 

  25. Uversky VN, Gillespie JR, Fink AL (2000) Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    CAS  PubMed  Google Scholar 

  26. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49

    CAS  PubMed  Google Scholar 

  27. Dunker AK et al (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582

    CAS  PubMed  Google Scholar 

  28. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269(1):2–12

    CAS  PubMed  Google Scholar 

  30. Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871

    CAS  PubMed  Google Scholar 

  31. Uversky VN (2020) Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics 19(1):60–68

    CAS  PubMed  Google Scholar 

  32. Iakoucheva LM et al (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    CAS  PubMed  Google Scholar 

  33. Uversky VN (2014) The triple power of D(3): protein intrinsic disorder in degenerative diseases. Front Biosci (Landmark Ed) 19:181–258

    CAS  Google Scholar 

  34. Du Z, Uversky VN (2017) A Comprehensive survey of the roles of highly disordered proteins in type 2 diabetes. Int J Mol Sci 18(10):2010

    PubMed Central  Google Scholar 

  35. Cheng Y et al (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45(35):10448–10460

    CAS  PubMed  Google Scholar 

  36. Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5(3):260–287

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    CAS  PubMed  Google Scholar 

  38. Uversky VN et al (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 114(13):6844–6879

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xue B et al (2010) Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 4(Suppl 1):S1

    PubMed  PubMed Central  Google Scholar 

  40. Chen JW et al (2006) Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. J Proteome Res 5(4):879–887

    PubMed  PubMed Central  Google Scholar 

  41. Yan J et al (2013) RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochim Biophys Acta 1834(8):1671–1680

    CAS  PubMed  Google Scholar 

  42. Peng Z, Mizianty MJ, Kurgan L (2014) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 82(1):145–158

    CAS  PubMed  Google Scholar 

  43. Midic U et al (2009) Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 10(Suppl 1):S12

    PubMed  PubMed Central  Google Scholar 

  44. Hu G et al (2017) Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci 18(12):2761

    PubMed Central  Google Scholar 

  45. Colak R et al (2013) Distinct types of disorder in the human proteome: functional implications for alternative splicing. PLoS Comput Biol 9(4):e1003030

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Korneta I, Bujnicki JM (2012) Intrinsic disorder in the human spliceosomal proteome. PLoS Comput Biol 8(8):e1002641

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pentony MM, Jones DT (2010) Modularity of intrinsic disorder in the human proteome. Proteins 78(1):212–221

    CAS  PubMed  Google Scholar 

  48. Forcelloni S, Giansanti A (2020) Evolutionary forces and codon bias in different flavors of intrinsic disorder in the human proteome. J Mol Evol 88(2):164–178

    CAS  PubMed  Google Scholar 

  49. Fong JH, Shoemaker BA, Panchenko AR (2012) Intrinsic protein disorder in human pathways. Mol Biosyst 8(1):320–326

    CAS  PubMed  Google Scholar 

  50. Fagerberg L et al (2011) Mapping the subcellular protein distribution in three human cell lines. J Proteome Res 10(8):3766–3777

    CAS  PubMed  Google Scholar 

  51. Thul PJ et al (2017) A subcellular map of the human proteome. Science 356(6340):3321

    Google Scholar 

  52. Meng F et al (2015) Compartmentalization and functionality of nuclear disorder: intrinsic disorder and protein-protein interactions in intra-nuclear compartments. Int J Mol Sci 17(1):24

    PubMed Central  Google Scholar 

  53. Darling AL et al (2018) Intrinsically disordered proteome of human membrane-less organelles. Proteomics 18(5–6):e1700193

    PubMed  Google Scholar 

  54. Gene Ontology C et al (2013) Gene ontology annotations and resources. Nucleic Acids Res 41(Database issue):D530–D535

    Google Scholar 

  55. Gene Ontology C (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056

    Google Scholar 

  56. UniProt C (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Google Scholar 

  57. Binder JX et al (2014) COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database (Oxford) 2014:bau012

    Google Scholar 

  58. Piovesan D et al (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46(D1):D471–D476

    CAS  PubMed  Google Scholar 

  59. Vucetic S et al (2005) DisProt: a database of protein disorder. Bioinformatics 21(1):137–140

    CAS  PubMed  Google Scholar 

  60. Hatos A et al (2020) DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Res 48(D1):D269–D276

    CAS  PubMed  Google Scholar 

  61. Miskei M, Antal C, Fuxreiter M (2017) FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res 45(D1):D228–D235

    CAS  PubMed  Google Scholar 

  62. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Le Gall T et al (2007) Intrinsic disorder in the protein data bank. J Biomol Struct Dyn 24(4):325–342

    PubMed  Google Scholar 

  64. Ulrich EL et al (2008) BioMagResBank. Nucleic Acids Res 36(Database issue):D402–D408

    CAS  PubMed  Google Scholar 

  65. He B et al (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949

    CAS  PubMed  Google Scholar 

  66. Meng F, Uversky VN, Kurgan L (2017) Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 74(17):3069–3090

    CAS  PubMed  Google Scholar 

  67. Meng F, Uversky V, Kurgan L (2017) Computational prediction of intrinsic disorder in proteins. Curr Protoc Protein Sci 88:2–16

    CAS  PubMed  Google Scholar 

  68. Liu Y, Wang X, Liu B (2019) A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief Bioinform 20(1):330–346

    PubMed  Google Scholar 

  69. Katuwawala A, Oldfield CJ, Kurgan L (2020) Accuracy of protein-level disorder predictions. Brief Bioinform. https://doi.org/10.1093/bib/bbz100

    Article  PubMed  Google Scholar 

  70. Necci M et al (2018) A comprehensive assessment of long intrinsic protein disorder from the DisProt database. Bioinformatics 34(3):445–452

    CAS  PubMed  Google Scholar 

  71. Walsh I et al (2015) Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31(2):201–208

    CAS  PubMed  Google Scholar 

  72. Monastyrskyy B et al (2014) Assessment of protein disorder region predictions in CASP10. Proteins 82(Suppl 2):127–137

    CAS  PubMed  Google Scholar 

  73. Peng ZL, Kurgan L (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 13(1):6–18

    CAS  PubMed  Google Scholar 

  74. Katuwawala A, Oldfield CJ, Kurgan L (2020) DISOselect: disorder predictor selection at the protein level. Protein Sci 29(1):184–200

    CAS  PubMed  Google Scholar 

  75. Peng Z, Kurgan L (2012) On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 2012:176–187

    Google Scholar 

  76. Zhao B, Xue B (2018) Decision-tree based meta-strategy improved accuracy of disorder prediction and identified novel disordered residues inside binding motifs. Int J Mol Sci 19(10):3052

    PubMed Central  Google Scholar 

  77. Necci M et al (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33(9):1402–1404

    CAS  PubMed  Google Scholar 

  78. Yan J, Marcus M, Kurgan L (2014) Comprehensively designed consensus of standalone secondary structure predictors improves Q3 by over 3%. J Biomol Struct Dyn 32(1):36–51

    CAS  PubMed  Google Scholar 

  79. Barik A et al (2020) DEPICTER: intrinsic disorder and disorder function prediction server. J Mol Biol 432(11):3379–3387

    CAS  PubMed  Google Scholar 

  80. Walsh I et al (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509

    CAS  PubMed  Google Scholar 

  81. Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46(W1):W329–W337

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dosztanyi Z et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    CAS  PubMed  Google Scholar 

  83. Linding R et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459

    CAS  PubMed  Google Scholar 

  84. Yang ZR et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    CAS  PubMed  Google Scholar 

  85. Peng K et al (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208

    PubMed  PubMed Central  Google Scholar 

  86. Linding R et al (2003) GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  87. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212

    Google Scholar 

  88. Mitchell AL et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360

    CAS  PubMed  Google Scholar 

  89. Dana JM et al (2019) SIFTS: updated Structure Integration with function, taxonomy and sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res 47(D1):D482–D489

    CAS  PubMed  Google Scholar 

  90. Meng F et al (2016) Compartmentalization and functionality of nuclear disorder: intrinsic disorder and protein-protein interactions in intra-nuclear compartments. Int J Mol Sci 17(1):24s

    Google Scholar 

  91. Kulkarni P, Uversky VN (2018) Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics 18(21–22):1800061

    Google Scholar 

  92. Peng Z, Uversky VN, Kurgan L (2016) Genes encoding intrinsic disorder in eukaryota have high GC content. Intrinsically Disord Proteins 4(1):e1262225

    PubMed  PubMed Central  Google Scholar 

  93. Yan J et al (2019) Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci 77:2423

    PubMed  Google Scholar 

  94. Peng Z et al (2014) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell Mol Life Sci 71(8):1477–1504

    CAS  PubMed  Google Scholar 

  95. Peng Z et al (2012) More than just tails: intrinsic disorder in histone proteins. Mol Biosyst 8(7):1886–1901

    CAS  PubMed  Google Scholar 

  96. Zhao B, Xue B (2016) Self-regulation of functional pathways by motifs inside the disordered tails of beta-catenin. BMC Genomics 17(Suppl 5):484

    PubMed  PubMed Central  Google Scholar 

  97. Charon J et al (2016) Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation. Mol BioSyst 12(2):634–652

    CAS  PubMed  Google Scholar 

  98. Dolan PT et al (2015) Intrinsic disorder mediates hepatitis C virus core-host cell protein interactions. Protein Sci 24(2):221–235

    CAS  PubMed  Google Scholar 

  99. Fan X et al (2014) The intrinsic disorder status of the human hepatitis C virus proteome. Mol Biosyst 10(6):1345–1363

    CAS  PubMed  Google Scholar 

  100. Xue B et al (2012) Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 69(8):1211–1259

    CAS  PubMed  Google Scholar 

  101. Xue B et al (2014) Structural disorder in viral proteins. Chem Rev 114(13):6880–6911

    CAS  PubMed  Google Scholar 

  102. Meng F et al (2015) Unstructural biology of the dengue virus proteins. FEBS J 282(17):3368–3394

    CAS  PubMed  Google Scholar 

  103. Patil A, Kinoshita K, Nakamura H (2010) Hub promiscuity in protein-protein interaction networks. Int J Mol Sci 11(4):1930–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fuxreiter M et al (2014) Disordered proteinaceous machines. Chem Rev 114(13):6806–6843

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang C, Uversky VN, Kurgan L (2016) Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota Bacteria and Archaea. Proteomics 16(10):1486–1498

    CAS  PubMed  Google Scholar 

  106. Varadi M et al (2015) Functional advantages of conserved intrinsic disorder in RNA-binding proteins. PLoS ONE 10(10):e0139731

    PubMed  PubMed Central  Google Scholar 

  107. Peng Z et al (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20(9):1257–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Uversky AV et al (2013) On the intrinsic disorder status of the major players in programmed cell death pathways. F1000Res 2:190

    PubMed  PubMed Central  Google Scholar 

  109. Na I et al (2016) Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. Mol Biosyst 12(9):2798–2817

    CAS  PubMed  Google Scholar 

  110. Boutet E et al (2007) UniProtKB/Swiss-Prot. Methods Mol Biol 406:89–112

    CAS  PubMed  Google Scholar 

  111. Tompa P et al (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31(3):328–335

    CAS  PubMed  Google Scholar 

  112. Howell M et al (2012) Not that rigid midgets and not so flexible giants: on the abundance and roles of intrinsic disorder in short and long proteins. J Biol Syst 20(4):471–511

    CAS  Google Scholar 

  113. Yan J et al (2016) Molecular recognition features (MoRFs) in three domains of life. Mol Biosyst 12(3):697–710

    CAS  PubMed  Google Scholar 

  114. Meng F et al (2018) Functional and structural characterization of osteocytic MLO-Y4 cell proteins encoded by genes differentially expressed in response to mechanical signals in vitro. Sci Rep 8(1):6716

    PubMed  PubMed Central  Google Scholar 

  115. Ghadermarzi S et al (2019) Sequence-derived markers of drug targets and potentially druggable human proteins. Front Genet 10:1075

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Armstrong RA (2014) When to use the Bonferroni correction. Ophthalmic Physiol Opt 34(5):502–508

    PubMed  Google Scholar 

  117. Oates ME et al (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516

    CAS  PubMed  Google Scholar 

  118. Sandhu KS (2009) Intrinsic disorder explains diverse nuclear roles of chromatin remodeling proteins. J Mol Recognit 22(1):1–8

    CAS  PubMed  Google Scholar 

  119. Mi H et al (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566

    PubMed  PubMed Central  Google Scholar 

  120. Mi H et al (2019) Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14.0). Nat Protoc 14(3):703–721

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Uversky VN (2018) Intrinsic disorder, protein-protein interactions, and disease. Adv Protein Chem Struct Biol 110:85–121

    CAS  PubMed  Google Scholar 

  122. Uversky VN (2013) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19(23):4191–4213

    CAS  PubMed  Google Scholar 

  123. Hsu WL et al (2012) Intrinsic protein disorder and protein-protein interactions. Pac Symp Biocomput 2012:116–127

    Google Scholar 

  124. Staby L et al (2017) Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 474(15):2509–2532

    CAS  PubMed  Google Scholar 

  125. Liu J et al (2006) Intrinsic disorder in transcription factors. Biochemistry 45(22):6873–6888

    CAS  PubMed  Google Scholar 

  126. Toth-Petroczy A et al (2008) Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol 4(12):e1000243

    PubMed  PubMed Central  Google Scholar 

  127. Lu X et al (2009) Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry 48(1):164–172

    CAS  PubMed  Google Scholar 

  128. Mallik S, Kundu S (2015) Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation. J Biomol Struct Dyn 33(3):639–656

    CAS  PubMed  Google Scholar 

  129. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22(6):693–724

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jakob U, Kriwacki R, Uversky VN (2014) Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114(13):6779–6805

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Smith LM, Kelleher NL, P. Consortium for Top Down (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    CAS  PubMed  Google Scholar 

  133. Dunker AK, Obradovic Z (2001) The protein trinity–linking function and disorder. Nat Biotechnol 19(9):805–806

    CAS  PubMed  Google Scholar 

  134. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12(1):54–60

    CAS  PubMed  Google Scholar 

  135. Dunker AK et al (2005) Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148

    CAS  PubMed  Google Scholar 

  136. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    CAS  PubMed  Google Scholar 

  137. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579(15):3346–3354

    CAS  PubMed  Google Scholar 

  138. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384

    CAS  PubMed  Google Scholar 

  139. Dunker AK et al (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

    CAS  PubMed  Google Scholar 

  140. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19(1):31–38

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Uversky VN (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634

    CAS  PubMed  Google Scholar 

  142. DeForte S, Uversky VN (2017) Not an exception to the rule: the functional significance of intrinsically disordered protein regions in enzymes. Mol Biosyst 13(3):463–469

    CAS  PubMed  Google Scholar 

  143. DeForte S, Uversky VN (2016) Order, disorder, and everything in between. Molecules 21(8):1090

    PubMed Central  Google Scholar 

  144. Yook SH, Oltvai ZN, Barabasi AL (2004) Functional and topological characterization of protein interaction networks. Proteomics 4(4):928–942

    CAS  PubMed  Google Scholar 

  145. Jeong H et al (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    CAS  PubMed  Google Scholar 

  146. Dunker AK et al (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148

    CAS  PubMed  Google Scholar 

  147. Dosztanyi Z et al (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5(11):2985–2995

    CAS  PubMed  Google Scholar 

  148. Haynes C et al (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100

    PubMed  PubMed Central  Google Scholar 

  149. Oldfield CJ et al (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom 9(Suppl 1):S1

    Google Scholar 

  150. Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580(8):2041–2045

    CAS  PubMed  Google Scholar 

  151. Patil A, Kinoshita K, Nakamura H (2010) Domain distribution and intrinsic disorder in hubs in the human protein-protein interaction network. Protein Sci 19(8):1461–1468

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported in part by the National Science Foundation (Grant 1617369) and the Robert J. Mattauch Endowment funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir N. Uversky or Lukasz Kurgan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Katuwawala, A., Uversky, V.N. et al. IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cell. Mol. Life Sci. 78, 2371–2385 (2021). https://doi.org/10.1007/s00018-020-03654-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03654-0

Keywords

Navigation