Skip to main content

Whole-Body Fluorescence Imaging in the Near-Infrared Window

  • Chapter
  • First Online:
Optical Imaging in Human Disease and Biological Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 3233))

Abstract

Fluorescence imaging is one of the most widely used in vivo imaging methods for both fundamental research and clinical practice. Due to the reduced photon scattering, absorption, and autofluorescence in tissues, the emerging near-infrared (NIR) imaging (650–1700 nm) can afford deep tissue imaging with high spatiotemporal resolution and in vivo report the anatomical structures as well as the physiological activities in a whole-body level. Here, we give a brief introduction to fluorescence imaging in the first NIR (NIR-I, 650–950 nm) and second NIR (NIR-II, 1000–1700 nm) windows, summarize the recently developed NIR fluorophores and their applications in whole-body vascular system imaging, precision cancer theranostics, and regenerative medicine. Finally, the clinical applications and future prospects of in vivo NIR fluorescence imaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hong GS, Antaris AL, Dai HJ (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1:0010

    Article  CAS  Google Scholar 

  2. Kenry DY, Liu B (2018) Recent advances of optical imaging in the second near-infrared window. Adv Mater 30:e1802394

    Article  PubMed  CAS  Google Scholar 

  3. Zhu S, Tian R, Antaris AL et al (2019) Near-infrared-II molecular dyes for cancer imaging and surgery. Adv Mater 31:e1900321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chen G, Zhang Y, Li C et al (2018) Recent advances in tracking the transplanted stem cells using near-infrared fluorescent nanoprobes: turning from the first to the second near-infrared window. Adv Healthc Mater 7:1800497

    Article  CAS  Google Scholar 

  5. Li C, Wang Q (2019) Advanced NIR-II fluorescence imaging technology for in vivo precision tumor theranostics. Adv Therap 2:1900053

    Google Scholar 

  6. Wang H, Mu XY, Yang J et al (2019) Brain imaging with near-infrared fluorophores. Coord Chem Rev 380:550–571

    Article  CAS  Google Scholar 

  7. Li CY, Wang QB (2018) Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 12:9654–9659

    Article  PubMed  CAS  Google Scholar 

  8. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4:710–711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614

    Article  PubMed  CAS  Google Scholar 

  10. Li C, Zhang Y, Wang M et al (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35:393–400

    Article  PubMed  CAS  Google Scholar 

  11. He SQ, Song J, Qu JL et al (2018) Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev 47:4258–4278

    Article  PubMed  CAS  Google Scholar 

  12. Lu H, Carroll GM, Neale NR et al (2019) Infrared quantum dots: progress, challenges, and opportunities. ACS Nano 13:939–953

    PubMed  CAS  Google Scholar 

  13. Deng G, Li S, Sun Z et al (2018) Near-infrared fluorescence imaging in the largely unexplored window of 900-1,000 nm. Theranostics 8:4116–4128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tanaka E, Chen FY, Flaumenhaft R et al (2009) Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 138:133–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Starosolski Z, Bhavane R, Ghaghada KB et al (2017) Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One 12:e0187563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Newton AD, Predina JD, Corbett CJ et al (2019) Optimization of second window indocyanine green for intraoperative near-infrared imaging of thoracic malignancy. J Am Coll Surg 228:188–197

    Article  PubMed  Google Scholar 

  17. Choi HS, Gibbs SL, Lee JH et al (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31:148–153

    Article  PubMed  CAS  Google Scholar 

  18. Rosenthal EL, Warram JM, de Boer E et al (2015) Safety and tumor specificity of cetuximab-IRdye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Warram JM, de Boer E, Korb M et al (2015) Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRdye 800cw. Br J Neurosurg 29:850–858

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hyun H, Henary M, Gao T et al (2016) 700-nm zwitterionic near-infrared fluorophores for dual-channel image-guided surgery. Mol Imaging Biol 18:52–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Antaris AL, Chen H, Cheng K et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242

    Article  PubMed  CAS  Google Scholar 

  22. Lei Z, Sun C, Pei P et al (2019) Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew Chem Int Ed Engl 58:8166–8171

    Google Scholar 

  23. Tao ZM, Hong GS, Shinji C et al (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed Engl 52:13002–13006

    Google Scholar 

  24. Antaris AL, Chen H, Diao S et al (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun 8:15269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhu S, Yang Q, Antaris AL et al (2017) Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A 114:962–967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tang Y, Li Y, Hu X et al (2018) “Dual lock-and-key”-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window. Adv Mater 30:e1801140

    Article  PubMed  CAS  Google Scholar 

  27. Chen L, Chen D, Jiang Y et al (2019) A bodipy-based donor/donor-acceptor system: towards highly efficient long-wavelength-excitable near-ir polymer dots with narrow and strong absorption features. Angew Chem Int Ed Engl 58:7008–7012

    Google Scholar 

  28. Hong GS, Zou YP, Antaris AL et al (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206

    Article  PubMed  CAS  Google Scholar 

  29. Miao QQ, Pu KY (2018) Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater 30:e1801778

    Article  PubMed  CAS  Google Scholar 

  30. Guo B, Feng Z, Hu D et al (2019) Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging. Adv Mater 31:1902504

    Article  CAS  Google Scholar 

  31. Qi J, Sun C, Li D et al (2018) Aggregation-induced emission luminogen with near-infrared-II excitation and near-infrared-i emission for ultradeep intravital two-photon microscopy. ACS Nano 12:7936–7945

    Article  PubMed  CAS  Google Scholar 

  32. Qi J, Sun C, Zebibula A et al (2018) Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv Mater 30:e1706856

    Article  PubMed  CAS  Google Scholar 

  33. Fu W, Yan C, Guo Z et al (2019) Rational design of near-infrared aggregation-induced-emission-active probes: in situ mapping of amyloid-beta plaques with ultrasensitivity and high-fidelity. J Am Chem Soc 141:3171–3177

    Article  PubMed  CAS  Google Scholar 

  34. Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Google Scholar 

  35. Zheng YG, Gao SJ, Ying JY (2007) Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv Mater 19:376–380

    Article  CAS  Google Scholar 

  36. Yukawa H, Watanabe M, Kaji N et al (2012) Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots. Biomaterials 33:2177–2186

    Article  PubMed  CAS  Google Scholar 

  37. Du YP, Xu B, Fu T et al (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132:1470–1471

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Hong G, Zhang Y et al (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6:3695–3702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dong B, Li C, Chen G et al (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25:2503–2509

    Article  CAS  Google Scholar 

  40. Gu YP, Cui R, Zhang ZL et al (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82

    Article  PubMed  CAS  Google Scholar 

  41. Yang Y, Chen J, Shang X et al (2019) Visualizing the fate of intra-articular injected mesenchymal stem cells in vivo in the second near-infrared window for the effective treatment of supraspinatus tendon tears. Adv Sci 6:1901018

    Article  CAS  Google Scholar 

  42. Chen J, Kong YF, Wang W et al (2016) Direct water-phase synthesis of lead sulfide quantum dots encapsulated by beta-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity. Chem Commun 52:4025–4028

    Article  CAS  Google Scholar 

  43. Ma ZR, Zhang MX, Yue JY et al (2018) Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution. Adv Funct Mater 28:1803417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Goswami N, Giri A, Kar S et al (2012) Protein-directed synthesis of NIR-emitting, tunable hgs quantum dots and their applications in metal-ion sensing. Small 8:3175–3184

    Article  PubMed  CAS  Google Scholar 

  45. Xie RG, Peng XG (2009) Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc 131:10645–10651

    Article  PubMed  CAS  Google Scholar 

  46. Miyazaki Y, Yukawa H, Nishi H et al (2013) Adipose tissue-derived stem cell imaging using cadmium-free quantum dots. Cell Med 6:91–97

    Article  PubMed  PubMed Central  Google Scholar 

  47. Park JH, Gu L, von Maltzahn G et al (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ma QA, Su XG (2010) Near-infrared quantum dots: synthesis, functionalization and analytical applications. Analyst 135:1867–1877

    Article  PubMed  CAS  Google Scholar 

  49. Zhao P, Xu Q, Tao J et al (2018) Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdiscipl Rev Nanomed Nanobiotechnol 10:e1483

    Article  Google Scholar 

  50. Naczynski DJ, Tan MC, Zevon M et al (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199

    Article  PubMed  CAS  Google Scholar 

  51. Zhao L, Kutikov A, Shen J et al (2013) Stem cell labeling using polyethylenimine conjugated (alpha-naybf4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics 3:249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gao N, Ling B, Gao Z et al (2017) Near-infrared-emitting nayf4:Yb,tm/mn upconverting nanoparticle/gold nanorod electrochemiluminescence resonance energy transfer system for sensitive prostate-specific antigen detection. Anal Bioanal Chem 409:2675–2683

    Article  PubMed  CAS  Google Scholar 

  53. He SQ, Chen S, Li DF et al (2019) High affinity to skeleton rare earth doped nanoparticles for near-infrared ii imaging. Nano Lett 19:2985–2992

    Article  PubMed  CAS  Google Scholar 

  54. Wang SF, Liu L, Fan Y et al (2019) In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett 19:2418–2427

    Article  PubMed  CAS  Google Scholar 

  55. Hong GS, Lee JC, Robinson JT et al (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ceppi L, Bardhan NM, Na Y et al (2019) Real-time single-walled carbon nanotube-based fluorescence imaging improves survival after debulking surgery in an ovarian cancer model. ACS Nano 13:5356–5365

    Article  PubMed  CAS  Google Scholar 

  57. Welsher K, Liu Z, Sherlock SP et al (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yu MX, Zhou JC, Du BJ et al (2016) Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew Chem Int Ed Engl 55:2787–2791

    Google Scholar 

  59. Biffi S, Petrizza L, Garrovo C et al (2016) Multimodal near-infrared-emitting plus silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities. Int J Nanomedicine 11:4865–4874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Li C, Cao L, Zhang Y et al (2015) Preoperative detection and intraoperative visualization of brain tumors for more precise surgery: a new dual-modality MRI and nir nanoprobe. Small 11:4517–4525

    Article  PubMed  CAS  Google Scholar 

  61. Zhang XD, Wang HS, Antaris AL et al (2016) Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater 28:6872–6879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Vahrmeijer AL, Hutteman M, van der Vorst JR et al (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10:507–518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hong G, Robinson JT, Zhang Y et al (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 51:9818–9821

    Google Scholar 

  64. Sun Y, Ding M, Zeng X et al (2017) Novel bright-emission small-molecule nir-ii fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 8:3489–3493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tang Y, Pei F, Lu X et al (2019) Recent advances on activatable NIR-II fluorescence probes for biomedical imaging. Adv Opt Mater 7:1900917

    Article  CAS  Google Scholar 

  66. Li C, Li F, Zhang Y et al (2015) Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9:12255–12263

    Article  PubMed  CAS  Google Scholar 

  67. Song C, Zhang Y, Li C et al (2016) Enhanced nanodrug delivery to solid tumors based on a tumor vasculature-targeted strategy. Adv Funct Mater 26:4192–4200

    Article  CAS  Google Scholar 

  68. Li C, Zhang Y, Chen G et al (2017) Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29:1605754

    Article  CAS  Google Scholar 

  69. Verbeek FPR, Schaafsma BE, Tummers QRJG et al (2014) Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg Endosc 28:1076–1082

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang P, Fan Y, Lu L et al (2018) NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun 9:2898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wen Q, Zhang Y, Li C et al (2019) NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew Chem Int Ed Engl 58:11001–11006

    Google Scholar 

  72. Naumova AV, Modo M, Moore A et al (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32:804–1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Chen G, Tian F, Li C et al (2015) In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials 53:265–273

    Article  PubMed  CAS  Google Scholar 

  74. Chen G, Lin S, Huang D et al (2018) Revealing the fate of transplanted stem cells in vivo with a novel optical imaging strategy. Small 14:1702679

    Article  CAS  Google Scholar 

  75. Huang D, Lin S, Wang Q et al (2019) An NIR-II fluorescence/dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells. Adv Funct Mater 29:1806546

    Article  CAS  Google Scholar 

  76. Chen GC, Tian F, Zhang Y et al (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater 24:2481–2488

    Article  CAS  Google Scholar 

  77. Alam R, Karam LM, Doane TL et al (2014) Near infrared bioluminescence resonance energy transfer from firefly luciferase--quantum dot bionanoconjugates. Nanotechnology 25:495606

    Article  PubMed  CAS  Google Scholar 

  78. Ma N, Marshall AF, Rao JH (2010) Near-infrared light emitting luciferase via biomineralization. J Am Chem Soc 132:6884–6885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xiong LQ, Shuhendler AJ, Rao JH (2012) Self-luminescing bret-fret near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193

    Article  PubMed  CAS  Google Scholar 

  80. Lee SK, Mortensen LJ, Lin CP et al (2014) An authentic imaging probe to track cell fate from beginning to end. Nat Commun 5:5216

    Article  PubMed  CAS  Google Scholar 

  81. Wang Z, Zhang RL, Wang ZL et al (2014) Bioinspired nanocomplex for spatiotemporal imaging of sequential mrna expression in differentiating neural stem cells. ACS Nano 8:12386–12396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wiraja C, Yeo DC, Chong MSK et al (2016) Nanosensors for continuous and noninvasive monitoring of mesenchymal stem cell osteogenic differentiation. Small 12:1342–1350

    Article  PubMed  CAS  Google Scholar 

  83. Troyan SL, Kianzad V, Gibbs-Strauss SL et al (2009) The flare intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16:2943–2952

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mieog JS, Troyan SL, Hutteman M et al (2011) Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol 18:2483–2491

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, G., Li, C., Zhang, Y., Wang, Q. (2021). Whole-Body Fluorescence Imaging in the Near-Infrared Window. In: Wei, X., Gu, B. (eds) Optical Imaging in Human Disease and Biological Research. Advances in Experimental Medicine and Biology, vol 3233. Springer, Singapore. https://doi.org/10.1007/978-981-15-7627-0_5

Download citation

Publish with us

Policies and ethics