Skip to main content

Peroxisomes in Humans: Metabolic Functions, Cross Talk with Other Organelles, and Pathophysiology of Peroxisomal Disorders

  • Chapter
  • First Online:
Molecular Machines Involved in Peroxisome Biogenesis and Maintenance

Abstract

Peroxisomes play a crucial role in cellular metabolism as exemplified by the devastating consequences caused by deficiencies of one or more peroxisomal enzymes in humans. The major metabolic functions of peroxisomes in humans include fatty acid beta-oxidation, etherphospholipid biosynthesis, fatty acid alpha-oxidation; glyoxylate detoxification, bile acid synthesis, l-pipecolic acid oxidation, and docosahexaenoic acid (DHA) formation. Except from the bile acids which are true metabolic end products of bile acid formation in the liver as generated in peroxisomes, all the other products of peroxisome metabolism are not true end products but require continued metabolism in other organelles to reach their final fate. This explains the crosstalk between peroxisomes and other subcellular organelles notably mitochondria and the endoplasmic reticulum. In this review we will discuss the metabolic functions of peroxisomes in humans and the crosstalk with other subcellular organelles. In addition we will discuss the pathophysiological consequences of genetic defects in peroxisome metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baes M, Van Veldhoven PP (2012) Mouse models for peroxisome biogenesis defects and beta-oxidation enzyme deficiencies. Biochim Biophys Acta 1822:1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP (2000) Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275:16329–16336

    Article  CAS  PubMed  Google Scholar 

  • Baumgart E, Fahimi HD, Stich A, Volkl A (1996) L-lactate dehydrogenase A4- and A3B isoforms are bona fide peroxisomal enzymes in rat liver. Evidence for involvement in intraperoxisomal NADH reoxidation. J Biol Chem 271:3846–3855

    Article  CAS  PubMed  Google Scholar 

  • Braverman NE, D’Agostino MD, Maclean GE (2013) Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. Dev Disabil Res Rev 17:187–196

    Article  PubMed  Google Scholar 

  • Brites P, Waterham HR, Wanders RJ (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636:219–231

    Article  CAS  PubMed  Google Scholar 

  • Brown FR III, McAdams AJ, Cummins JW, Konkol R, Singh I, Moser AB, Moser HW (1982) Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids. Johns Hopkins Med J 151:344–351

    PubMed  Google Scholar 

  • Bunik VI, Raddatz G, Wanders RJ, Reiser G (2006) Brain pyruvate and 2-oxoglutarate dehydrogenase complexes are mitochondrial targets of the CoA ester of the Refsum disease marker phytanic acid. FEBS Lett 580:3551–3557

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Viegas CM, Moura AP, Tonin AM, Grings M, Vargas CR, Wajner M (2010) In vitro evidence that phytanic acid compromises Na(+), K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats. Brain Res 1352:231–238

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Amaral AU, Tonin AM, Grings M, Moura AP, Eichler P, Vargas CR, Wajner M (2012) Experimental evidence that pristanic acid disrupts mitochondrial homeostasis in brain of young rats. J Neurosci Res 90:597–605

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Amaral AU, Tonin AM, Zanatta A, Viegas CM, Vargas CR, Wajner M (2013a) Disruption of mitochondrial homeostasis by phytanic acid in cerebellum of young rats. Cerebellum 12:362–369

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Zanatta A, Tonin AM, Viegas CM, Vargas CR, Leipnitz G, Ribeiro CA, Wajner M (2013b) Marked inhibition of Na+, K(+)- ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: possible underlying mechanisms of cerebellar ataxia in Refsum disease. J Bioenerg Biomembr 45:137–144

    Article  CAS  PubMed  Google Scholar 

  • da Silva TF, Sousa VF, Malheiro AR, Brites P (2012) The importance of ether-phospholipids: a view from the perspective of mouse models. Biochim Biophys Acta 1822:1501–1508

    Article  PubMed  Google Scholar 

  • de Waart DR, Koomen GC, Wanders RJ (1994) Studies on the urinary excretion of thromboxane B2 in Zellweger patients and control subjects: evidence for a major role for peroxisomes in the beta-oxidative chain-shortening of thromboxane B2. Biochim Biophys Acta 1226:44–48

    Article  PubMed  Google Scholar 

  • Deon M, Sitta A, Barschak AG, Coelho DM, Pigatto M, Schmitt GO, Jardim LB, Giugliani R, Wajner M, Vargas CR (2007) Induction of lipid peroxidation and decrease of antioxidant defenses in symptomatic and asymptomatic patients with X-linked adrenoleukodystrophy. Int J Dev Neurosci 25:441–444

    Article  CAS  PubMed  Google Scholar 

  • Diczfalusy U, Kase BF, Alexson SE, Bjorkhem I (1991) Metabolism of prostaglandin F2 alpha in Zellweger syndrome. Peroxisomal beta-oxidation is a major importance for in vivo degradation of prostaglandins in humans. J Clin Invest 88:978–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diczfalusy U, Vesterqvist O, Kase BF, Lund E, Alexson SE (1993) Peroxisomal chain-shortening of thromboxane B2: evidence for impaired degradation of thromboxane B2 in Zellweger syndrome. J Lipid Res 34:1107–1113

    CAS  PubMed  Google Scholar 

  • Eichler FS, Ren JQ, Cossoy M, Rietsch AM, Nagpal S, Moser AB, Frosch MP, Ransohoff RM (2008) Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol 63:729–742

    Article  PubMed  Google Scholar 

  • Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U (1999) Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-/ sterol carrier protein x-deficient mice. J Biol Chem 274:2766–2772

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Houten SM (2006) Peroxisomes and bile acid biosynthesis. Biochim Biophys Acta 1763:1427–1440

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Mooijer PA, Zhang Z, Reddy JK, Spector AA, Wanders RJ (2001) Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J Lipid Res 42:1987–1995

    CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Van Roermund CW, Wanders RJ, Dacremont G (2004) Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J Lipid Res 45:1104–1111

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Mooyer PA, Dekker C, Duran M, Soorani-Lunsing RJ, Boltshauser E, Macaya A, Gartner J, Majoie CB, Barth PG, Wanders RJ, Poll-The BT (2006a) Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann Neurol 59:92–104

    Article  PubMed  Google Scholar 

  • Ferdinandusse S, Kostopoulos P, Denis S, Rusch H, Overmars H, Dillmann U, Reith W, Haas D, Wanders RJ, Duran M, Marziniak M (2006b) Mutations in the gene encoding peroxisomal sterol carrier protein X (SCPx) cause leukencephalopathy with dystonia and motor neuropathy. Am J Hum Genet 78:1046–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferdinandusse S, Zomer AW, Komen JC, van den Brink CE, Thanos M, Hamers FP, Wanders RJ, van der Saag PT, Poll-The BT, Brites P (2008) Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proc Natl Acad Sci USA 105:17712–17717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fourcade S, Lopez-Erauskin J, Galino J, Duval C, Naudi A, Jove M, Kemp S, Villarroya F, Ferrer I, Pamplona R, Portero-Otin M, Pujol A (2008) Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773

    Article  CAS  PubMed  Google Scholar 

  • Galino J, Ruiz M, Fourcade S, Schluter A, Lopez-Erauskin J, Guilera C, Jove M, Naudi A, Garcia-Arumi E, Andreu AL, Starkov AA, Pamplona R, Ferrer I, Portero-Otin M, Pujol A (2011) Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. Antioxid Redox Signal 15:2095–2107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garashi M, Belchis D, Suzuki K (1976) Brain gangliosides in adrenoleukodystrophy. J Neurochem 27:327–328

    Article  CAS  PubMed  Google Scholar 

  • Gilg AG, Singh AK, Singh I (2000) Inducible nitric oxide synthase in the central nervous system of patients with X-adrenoleukodystrophy. J Neuropathol Exp Neurol 59:1063–1069

    CAS  PubMed  Google Scholar 

  • Gronemeyer T, Wiese S, Ofman R, Bunse C, Pawlas M, Hayen H, Eisenacher M, Stephan C, Meyer HE, Waterham HR, Erdmann R, Wanders RJ, Warscheid B (2013) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One 8:e57395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson RF, Szczepanik-VanLeeuwen P, Williams GC, Grabowski G, Sharp HL (1979) Defects of bile acid synthesis in Zellweger’s syndrome. Science 203:1107–1108

    Article  CAS  PubMed  Google Scholar 

  • Heymans HS, Schutgens RB, Tan R, van den Bosch H, Borst P (1983) Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306:69–70

    Article  CAS  PubMed  Google Scholar 

  • Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJ (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53:1296–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbard WC, Moser AB, Tortorelli S, Liu A, Jones D, Moser H (2006) Combined liquid chromatography-tandem mass spectrometry as an analytical method for high throughput screening for X-linked adrenoleukodystrophy and other peroxisomal disorders: preliminary findings. Mol Genet Metab 89:185–187

    Article  CAS  PubMed  Google Scholar 

  • Hunt MC, Siponen MI, Alexson SE (2012) The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim Biophys Acta 1822:1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP (2006) Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta 1761:973–994

    Article  CAS  PubMed  Google Scholar 

  • Idel S, Ellinghaus P, Wolfrum C, Nofer JR, Gloerich J, Assmann G, Spener F, Seedorf U (2002) Branched chain fatty acids induce nitric oxide-dependent apoptosis in vascular smooth muscle cells. J Biol Chem 277:49319–49325

    Article  CAS  PubMed  Google Scholar 

  • Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, Console L, Palmieri F (2011) The mitochondrial carnitine/acylcarnitine carrier: function, structure and physiopathology. Mol Asp Med 32:223–233

    Article  CAS  Google Scholar 

  • Jakobs BS, Wanders RJ (1991) Conclusive evidence that very-long-chain fatty acids are oxidized exclusively in peroxisomes in human skin fibroblasts. Biochem Biophys Res Commun 178:842–847

    Article  CAS  PubMed  Google Scholar 

  • Jedlitschky G, Mayatepek E, Keppler D (1993) Peroxisomal leukotriene degradation: biochemical and clinical implications. Adv Enzym Regul 33:181–194

    Article  CAS  Google Scholar 

  • Kitareewan S, Burka LT, Tomer KB, Parker CE, Deterding LJ, Stevens RD, Forman BM, Mais DE, Heyman RA, McMorris T, Weinberger C (1996) Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell 7:1153–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knazek RA, Rizzo WB, Schulman JD, Dave JR (1983) Membrane microviscosity is increased in the erythrocytes of patients with adrenoleukodystrophy and adrenomyeloneuropathy. J Clin Invest 72:245–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komen JC, Distelmaier F, Koopman WJ, Wanders RJ, Smeitink J, Willems PH (2007) Phytanic acid impairs mitochondrial respiration through protonophoric action. Cell Mol Life Sci 64:3271–3281

    Article  CAS  PubMed  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73:2043–2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leipnitz G, Amaral AU, Zanatta A, Seminotti B, Fernandes CG, Knebel LA, Vargas CR, Wajner M (2010) Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sci 87:275–280

    Article  CAS  PubMed  Google Scholar 

  • Lemotte PK, Keidel S, Apfel CM (1996) Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 236:328–333

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Erauskin J, Fourcade S, Galino J, Ruiz M, Schluter A, Naudi A, Jove M, Portero-Otin M, Pamplona R, Ferrer I, Pujol A (2011) Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol 70:84–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayatepek E, Flock B (1999) Increased urinary excretion of LTB4 and omega-carboxy-LTB4 in patients with Zellweger syndrome. Clin Chim Acta 282:151–155

    Article  CAS  PubMed  Google Scholar 

  • Mayatepek E, Ferdinandusse S, Meissner T, Wanders RJ (2004) Analysis of cysteinyl leukotrienes and their metabolites in bile of patients with peroxisomal or mitochondrial beta-oxidation defects. Clin Chim Acta 345:89–92

    Article  CAS  PubMed  Google Scholar 

  • Petrillo S, Piemonte F, Pastore A, Tozzi G, Aiello C, Pujol A, Cappa M, Bertini E (2013) Glutathione imbalance in patients with X-linked adrenoleukodystrophy. Mol Genet Metab 109:366–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poll-The BT, Roels F, Ogier H, Scotto J, Vamecq J, Schutgens RB, Wanders RJ, van Roermund CW, van Wijland MJ, Schram AW et al (1988) A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet 42:422–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poulos A, Sharp P, Fellenberg AJ, Danks DM (1985) Cerebro-hepato-renal (Zellweger) syndrome, adrenoleukodystrophy, and Refsum’s disease: plasma changes and skin fibroblast phytanic acid oxidase. Hum Genet 70:172–177

    Article  CAS  PubMed  Google Scholar 

  • Poulos A, Sharp P, Fellenberg AJ, Johnson DW (1988) Accumulation of pristanic acid (2, 6, 10, 14 tetramethylpentadecanoic acid) in the plasma of patients with generalised peroxisomal dysfunction. Eur J Pediatr 147:143–147

    Article  CAS  PubMed  Google Scholar 

  • Powers JM, Moser HW (1998) Peroxisomal disorders: genotype, phenotype, major neuropathologic lesions, and pathogenesis. Brain Pathol 8:101–120

    Article  CAS  PubMed  Google Scholar 

  • Rockenbach FJ, Deon M, Marchese DP, Manfredini V, Mescka C, Ribas GS, Habekost CT, Castro CG Jr, Jardim LB, Vargas CR (2012) The effect of bone marrow transplantation on oxidative stress in X-linked adrenoleukodystrophy. Mol Genet Metab 106:231–236

    Article  CAS  PubMed  Google Scholar 

  • Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  CAS  PubMed  Google Scholar 

  • Russell DW (2009) Fifty years of advances in bile acid synthesis and metabolism. J Lipid Res 50(Suppl):S120–S125

    PubMed Central  PubMed  Google Scholar 

  • Salido E, Pey AL, Rodriguez R, Lorenzo V (2012) Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta 1822:1453–1464

    Article  CAS  PubMed  Google Scholar 

  • Schaumburg HH, Powers JM, Suzuki K, Raine CS (1974) Adreno-leukodystrophy (sex-linked Schilder disease). Ultrastructural demonstration of specific cytoplasmic inclusions in the central nervous system. Arch Neurol 31:210–213

    Article  CAS  PubMed  Google Scholar 

  • Schluter A, Espinosa L, Fourcade S, Galino J, Lopez E, Ilieva E, Morato L, Asheuer M, Cook T, McLaren A, Reid J, Kelly F, Bates S, Aubourg P, Galea E, Pujol A (2012) Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy. Hum Mol Genet 21:1062–1077

    Article  PubMed Central  PubMed  Google Scholar 

  • Schonfeld P, Reiser G (2006) Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem 281:7136–7142

    Article  PubMed  Google Scholar 

  • Schonfeld P, Struy H (1999) Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria. FEBS Lett 457:179–183

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld P, Kahlert S, Reiser G (2004) In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition. Biochem J 383:121–128

    Article  PubMed Central  PubMed  Google Scholar 

  • Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KW, Wanders RJ, Maeda N, Assmann G (1998) Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12:1189–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Setchell KD, Heubi JE, Bove KE, O’Connell NC, Brewsaugh T, Steinberg SJ, Moser A, Squires RH Jr (2003) Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 124:217–232

    Article  PubMed  Google Scholar 

  • Singh I, Pujol A (2010) Pathomechanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis. Brain Pathol 20:838–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spector AA, Fang X, Snyder GD, Weintraub NL (2004) Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res 43:55–90

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA (1999) Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun 257:615–621

    Article  CAS  PubMed  Google Scholar 

  • Theda C, Moser AB, Powers JM, Moser HW (1992) Phospholipids in X-linked adrenoleukodystrophy white matter: fatty acid abnormalities before the onset of demyelination. J Neurol Sci 110:195–204

    Article  CAS  PubMed  Google Scholar 

  • Tsikas D, Schwedhelm E, Fauler J, Gutzki FM, Mayatepek E, Frolich JC (1998) Specific and rapid quantification of 8-iso-prostaglandin F2alpha in urine of healthy humans and patients with Zellweger syndrome by gas chromatography-tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 716:7–17

    Article  CAS  PubMed  Google Scholar 

  • Uto T, Contreras MA, Gilg AG, Singh I (2008) Oxidative imbalance in nonstimulated X-adrenoleukodystrophy-derived lymphoblasts. Dev Neurosci 30:410–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486

    PubMed Central  PubMed  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, van Cruchten A, Boek M, Kulik W, Waterham HR, Wanders RJ (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–4208

    Article  PubMed  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta 1811:148–152

    Article  PubMed  Google Scholar 

  • Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanhove GF, Van Veldhoven PP, Fransen M, Denis S, Eyssen HJ, Wanders RJ, Mannaerts GP (1993) The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem 268:10335–10344

    CAS  PubMed  Google Scholar 

  • Vargas CR, Wajner M, Sirtori LR, Goulart L, Chiochetta M, Coelho D, Latini A, Llesuy S, Bello-Klein A, Giugliani R, Deon M, Mello CF (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 1688:26–32

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven NM, Roe DS, Kok RM, Wanders RJ, Jakobs C, Roe CR (1998) Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J Lipid Res 39:66–74

    CAS  PubMed  Google Scholar 

  • Wanders RJ, Ferdinandusse S (2012) Peroxisomes, peroxisomal diseases, and the hepatotoxicity induced by peroxisomal metabolites. Curr Drug Metab 13:1401–1411

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006a) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006b) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763:1707–1720

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Ferdinandusse S, Brites P, Kemp S (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:272–280

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Komen J, Ferdinandusse S (2011a) Phytanic acid metabolism in health and disease. Biochim Biophys Acta 1811:498–507

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Komen J, Kemp S (2011b) Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J 278:182–194

    Article  CAS  PubMed  Google Scholar 

  • Waterham HR, Ebberink MS (2012) Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 1822:1430–1441

    Article  CAS  PubMed  Google Scholar 

  • Whitcomb RW, Linehan WM, Knazek RA (1988) Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro. J Clin Invest 81:185–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J (2013) Impaired very long-chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288:19269–19279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, Luo J, De Marzo AM, Isaacs WB (2005) Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63:316–323

    Article  CAS  PubMed  Google Scholar 

  • Zomer AW, van Der Burg B, Jansen GA, Wanders RJ, Poll-The BT, van Der Saag PT (2000) Pristanic acid and phytanic acid: naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor alpha. J Lipid Res 41:1801–1807

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the expert help of Mrs. Maddy Festen and Mr. Jos Ruiter in preparation of the manuscript. Work by the authors is supported by different grants including LeukoTreat (HEALTH-F2-2010-241622), Hersenstichting Nederland: F2012(1)-102, and MetaKids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. A. Wanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Wanders, R.J.A., Ferdinandusse, S., Waterham, H.R. (2014). Peroxisomes in Humans: Metabolic Functions, Cross Talk with Other Organelles, and Pathophysiology of Peroxisomal Disorders. In: Brocard, C., Hartig, A. (eds) Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1788-0_3

Download citation

Publish with us

Policies and ethics