Skip to main content

Anatomy and Physiology of the Gastrointestinal Microcirculation

  • Reference work entry
  • First Online:
PanVascular Medicine
  • 291 Accesses

Abstract

The gastrointestinal microcirculation subserves the functional activities of the gastrointestinal tract (transport and motor) that allow for the efficient assimilation of ingested nutrients. Intrinsic regulatory mechanisms ensure that local perfusion and oxygenation is adequate to support gastrointestinal function. The myogenic mechanism contributes to basal vascular tone, while the metabolic mechanism matches blood flow and O2 delivery to the metabolic demands of the postprandial state. Exposure of the gastrointestinal mucosa to noxious material (acid or lipids) elicits a neurogenic hyperemia to wash out and/or neutralize the threat. The mucosal capillaries are of the fenestrated type, allowing for the efficient transendothelial movement of small solutes (e.g., hydrolytic products of food digestion) while restricting the transendothelial movement of plasma proteins. In the preprandial state (nontransporting), the balance of hydrostatic and oncotic pressures across the capillaries ensures the maintenance of a normal interstitial hydration, i.e., the small net capillary filtration is balanced by an equal volume of lymphatic effluent. Solute-coupled fluid transport (absorption/secretion) is associated with appropriate adjustments in transcapillary forces and flows to minimize drastic changes in interstitial volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 649.99
Price excludes VAT (USA)
Hardcover Book
USD 549.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Acute arterial hypotension:

Abrupt decrease in arterial pressure.

Acute venous hypertension:

Abrupt increase in venous pressure.

Gastrointestinal oxygenation:

O2 level determined by ratio of O2 demand to delivery.

Metabolic vasoregulation:

Response of arterioles to alterations in O2 demand/O2 delivery ratio.

Mucosal microcirculation:

Arterioles, capillaries, and venules of the mucosa.

Myogenic vasoregulation:

Response of the arterioles to stretch of vascular smooth muscle.

Neurohumoral regulation of microcirculation:

Regulation of tissue blood flow by nerves.

Osmotic reflection coefficient (σd):

A unitless indicator of osmotic pressure across membrane.

Postprandial hyperemia:

Gastrointestinal hyperemia in response to meals.

Pressure-flow autoregulation:

Maintenance of blood flow during alterations of arterial pressure.

Reactive hyperemia:

Hyperemia upon release of a brief arterial occlusion.

Safety factors against edema:

Transcapillary forces & factors that can prevent tissue edema.

Safety factors against interstitial dehydration:

Forces and factors that can prevent tissue dehydration.

Sensory C fibers:

Unmyelinated afferent fibers responding to various stimuli (e.g., pain).

Tissue pO2 :

Partial pressure of O2 in tissue.

TRPV1 receptor:

Transient receptor potential cation channel subfamily V member 1.

References

  • Akiba Y, Ghayouri S, Takeuchi T, Mizumori M, Guth PH, Engel E, Swenson ER, Kaunitz JD (2006) Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum. Gastroenterology 131(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Allen A, Flemstrom G (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288(1):C1–C19

    Article  CAS  PubMed  Google Scholar 

  • Araki K, Furuya Y, Kobayashi M, Matsuura K, Ogata T, Isozaki H (1996) Comparison of mucosal microvasculature between the proximal and distal human colon. J Electron Microsc (Tokyo) 45(3):202–206

    Article  CAS  Google Scholar 

  • Baek EB, Kim SJ (2011) Mechanisms of myogenic response: Ca(2+)-dependent and -independent signaling. J Smooth Muscle Res 47(2):55–65

    Article  PubMed  Google Scholar 

  • Bohlen HG (1980) Intestinal tissue PO2 and microvascular responses during glucose exposure. Am J Physiol 238(2):H164–H171

    CAS  PubMed  Google Scholar 

  • Bohlen HG, Gore RW (1977) Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc Res 14(3):251–264

    Article  CAS  PubMed  Google Scholar 

  • Chou CC (1982) Relationship between intestinal blood flow and motility. Annu Rev Physiol 44:29–42

    Article  CAS  PubMed  Google Scholar 

  • Chou CC, Gallavan RH (1982) Blood flow and intestinal motility. Fed Proc 41(6):2090–2095

    CAS  PubMed  Google Scholar 

  • Davis MJ (2012) Perspective: physiological role(s) of the vascular myogenic response. Microcirculation 19(2):99–114

    Article  CAS  PubMed  Google Scholar 

  • Frasher WG Jr, Wayland H (1972) A repeating modular organization of the microcirculation of cat mesentery. Microvasc Res 4(1):62–76

    Article  PubMed  Google Scholar 

  • Gallavan RH Jr, Chou CC (1985) Possible mechanisms for the initiation and maintenance of postprandial intestinal hyperemia. Am J Physiol 249(3 Pt 1):G301–G308

    CAS  PubMed  Google Scholar 

  • Gallavan RH Jr, Chou CC et al (1980) Regional blood flow during digestion in the conscious dog. Am J Physiol 238(2):H220–H225

    PubMed  Google Scholar 

  • Gannon B, Browning J, O’Brien P, Rogers P (1984) Mucosal microvascular architecture of the fundus and body of human stomach. Gastroenterology 86(5 Pt 1):866–875

    CAS  PubMed  Google Scholar 

  • Glover LE, Colgan SP (2011) Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140(6):1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granger DN, Barrowman JA (1983) Microcirculation of the alimentary tract I. Physiology of transcapillary fluid and solute exchange. Gastroenterology 84(4):846–868

    CAS  PubMed  Google Scholar 

  • Granger DN, Granger HJ (1983) Systems analysis of intestinal hemodynamics and oxygenation. Am J Physiol 245(6):G786–G796

    CAS  PubMed  Google Scholar 

  • Granger HJ, Norris CP (1980) Intrinsic regulation of intestinal oxygenation in the anesthetized dog. Am J Physiol 238(6):H836–H843

    CAS  PubMed  Google Scholar 

  • Granger HJ, Nyhof RA (1982) Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake. Am J Physiol 243(2):G91–G96

    CAS  PubMed  Google Scholar 

  • Granger DN, Richardson PD et al (1980) Intestinal blood flow. Gastroenterology 78(4):837–863

    CAS  PubMed  Google Scholar 

  • Granger DN, Kvietys PR, Perry MA (1982) Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol 242(6):G570–G574

    CAS  PubMed  Google Scholar 

  • Granger DN, Perry MA, Kvietys PR, Tayler AE (1984) Capillary and interstitial forces during fluid absorption in the cat small intestine. Gastroenterology 86(2):267–273

    CAS  PubMed  Google Scholar 

  • Granger DN, Korthuis RJ, Kvietys PR, Tso P (1988) Intestinal microvascular exchange during lipid absorption. Am J Physiol 255(5 Pt 1):G690–G695

    CAS  PubMed  Google Scholar 

  • Haraldsson B, Nystrom J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88(2):451–487

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (2007a) Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 7(6):563–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzer P (2007b) Taste receptors in the gastrointestinal tract. V. Acid sensing in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 292(3):G699–G705

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Chappell D (2013) Reappraising starling: the physiology of the microcirculation. Curr Opin Crit Care 19(4):282–289

    Article  PubMed  Google Scholar 

  • Jeays AD, Lawford PV, Gillott R, Spencer PA, Bardhan KD, Hose DR (2007) A framework for the modeling of gut blood flow regulation and postprandial hyperaemia. World J Gastroenterol 13(9):1393–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    Article  CAS  PubMed  Google Scholar 

  • Kvietys PR, Granger DN (1982) Vasoactive agents and splanchnic oxygen uptake. Am J Physiol 243(1):G1–G9

    CAS  PubMed  Google Scholar 

  • Kvietys PR, Granger DN (2010) Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann N Y Acad Sci 1207(Suppl1):E29–E43

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvietys PR, Granger DN (2012) Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 52(3):556–592

    Article  CAS  PubMed  Google Scholar 

  • Kvietys PR, Wilborn WH, Granger DN (1981) Effects of net transmucosal volume flux on lymph flow in the canine colon. Structural-functional relationship. Gastroenterology 81(6):1080–1090

    CAS  PubMed  Google Scholar 

  • Kvietys PR, Perry MA, Granger DN (1983) Intestinal capillary exchange capacity and oxygen delivery-to-demand ratio. Am J Physiol 245(5 Pt 1):G635–G640

    CAS  PubMed  Google Scholar 

  • Kvietys PR, Specian RD, Grisham MB, Tso P (1991) Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. Am J Physiol 261(3 Pt 1):G384–G391

    CAS  PubMed  Google Scholar 

  • Leak LV, Burke JF (1968) Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol 36(1):129–149

    Article  PubMed Central  Google Scholar 

  • Lee JS (1979) Lymph capillary pressure of rat intestinal villi during fluid absorption. Am J Physiol 237(3):E301–E307

    CAS  PubMed  Google Scholar 

  • Lidington D, Schubert R, Bolz SS (2013) Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. Cardiovasc Res 97(3):404–412

    Article  CAS  PubMed  Google Scholar 

  • Mortillaro NA, Taylor AE (1976) Interaction of capillary and tissue forces in the cat small intestine. Circ Res 39(3):348–358

    Article  CAS  PubMed  Google Scholar 

  • Mortillaro NA, Taylor AE (1989) Interstitial fluid pressure of ileum measured from chronically implanted polyethylene capsules. Am J Physiol 257(1 Pt 2):H62–H69

    CAS  PubMed  Google Scholar 

  • Mulivor AW, Lipowsky HH (2009) Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16(8):657–666

    Article  CAS  PubMed  Google Scholar 

  • Muthuchamy M, Zawieja D (2008) Molecular regulation of lymphatic contractility. Ann N Y Acad Sci 1131:89–99

    Article  PubMed  Google Scholar 

  • Richardson PDI, Granger DN, Taylor AE (1979) Capillary filtration coefficient: the technique and its application to the small intestine. Cardiovasc Res 13(10):547–561

    Article  CAS  PubMed  Google Scholar 

  • Richardson PDI, Granger DN, Kvietys PR, Mailman D (1980) Permeability characteristics of colonic capillaries. Am J Physiol 239(4):G300–G305

    CAS  PubMed  Google Scholar 

  • Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY (2013) Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 33(5):911–933

    Article  CAS  PubMed  Google Scholar 

  • Rozsa Z, Jacobson ED (1989) Capsaicin-sensitive nerves are involved in bile-oleate-induced intestinal hyperemia. Am J Physiol 256(3 Pt 1):G476–G481

    CAS  PubMed  Google Scholar 

  • Sanchez FA, Rana R, Kim DD, Iwahashi T, Zheng R, Lai BK, Gordon DM, Meininger CJ, Duran WN (2009) Internalization of eNOS and NO delivery to subcellular targets determine agonist-induced hyperpermeability. Proc Natl Acad Sci U S A 106(16):6849–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd AP, Riedel GL (1984) Differences in reactive hyperemia between the intestinal mucosa and muscularis. Am J Physiol 247(6 Pt 1):G617–G622

    CAS  PubMed  Google Scholar 

  • Stan RV, Tse D, Deharvengt SJ, Smits NC, Xu Y, Luciano MR, McGarry CL, Buitendjk M, Nemani KV, Elgueta R, Kobayashi T, Shipman SL, Moodie KL, Daghlan CP, Ernst PA, Lee HK, Suriawinata AA, Schned AR, Longnecker DS, Fiering SN, Noelle RJ, Gimi B, Shworak NW, Carriere C (2012) The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev Cell 23(6):1203–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugito M, Araki K, Ogata T (1996) Three-dimensional organization of lymphatics in the dog stomach: a scanning electron microscopic study of corrosion casts. Arch Histol Cytol 59(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Messina EJ, Kaley G, Koller A (1992) Characteristics and origin of myogenic response in isolated mesenteric arterioles. Am J Physiol 263(5 Pt 2):H1486–H1491

    CAS  PubMed  Google Scholar 

  • Taylor AE (1981) Capillary fluid filtration. Starling forces and lymph flow. Circ Res 49(3):557–575

    Article  CAS  PubMed  Google Scholar 

  • Tse D, Stan RV (2010) Morphological heterogeneity of endothelium. Semin Thromb Hemost 36(3):236–245

    Article  CAS  PubMed  Google Scholar 

  • Vanner S, Macnaughton WK (2004) Submucosal secretomotor and vasodilator reflexes. Neurogastroenterol Motil 16(Suppl 1):39–43

    Article  PubMed  Google Scholar 

  • Weinbaum SJ, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Yablonski ME, Lifson N (1976) Mechanism of production of intestinal secretion by elevated venous pressure. J Clin Invest 57(4):904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Granger DN, Kvietys PR, Korthuis RJ, Premen AJ (1989) Microcirculation of the intestinal mucosa. Handbook of physiology. American Physiological Society, Bethesda, pp 1405–1474, Gastrointestinal system I

    Google Scholar 

  • Kvietys PR (2010) The gastrointestinal circulation. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  • Kvietys PR, Granger DN (2014) The splanchnic circulation. In: Reinus JF, Simon D (eds) Gastrointestinal anatomy and physiology: the essentials. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology. The cardiovascular system. American Physiological Society, Washington, DC, pp 467–520, IV

    Google Scholar 

  • Vowinkel T, Granger DN (2014) Gastrointestinal blood flow. In: Yamada T (ed) Textbook of gastroenterology. William & Wilkins, Philadelphia

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from King Abdulaziz City for Science and Technology (KACST). Some of the illustrations and graphics were generated by Mohammad Tazim Khan and Adel A. AlGahtani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Kvietys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kvietys, P.R. (2015). Anatomy and Physiology of the Gastrointestinal Microcirculation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_141

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_141

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics