Skip to main content

Full Lenght CgA: A Multifaceted Protein in Cardiovascular Health and Disease

  • Chapter
  • First Online:
Chromogranins: from Cell Biology to Physiology and Biomedicine

Part of the book series: UNIPA Springer Series ((USS))

  • 287 Accesses

Abstract

The multifunctional protein Chromogranin A (CGA) is a major marker of the sympatho-adrenal neuroendocrine (SAN) activity. Stored in neuroendocrine chromaffin secretory granules with several prohormones and their proteolytic enzymes, with noradrenaline and adrenaline, it is released with catecholamines upon stimulation. It is also present in other cell types, including myocardiocytes of various vertebrates, and humans, particularly in the presence of cardiomyopathy and heart failure. Due to the processing into a number of biologically active peptides, it represents a prohormone with an important modulatory role on endocrine, cardiovascular, metabolic, and immune systems. Circulating CGA increases in the presence of stress-induced excessive SAN activation and of pathologies such as neuroendocrine tumors, and cardiovascular diseases including hypertension, coronary syndrome, and heart failure. Thus, the protein is considered a promising biomarker for a number of severe diseases. Recently, it was found that in the heart of normotensive and hypertensive rats (SHRs), CGA is processed under hemodynamic and excitatory stimuli, and the exogenous full length protein directly affects myocardial and coronary performance by Akt/NOS/NO/cGMP/PKG pathway. We here illustrate the emerging role elicited by CGA in the control of circulatory homeostasis with particular focus on its cardiovascular action under physiological and physio-pathological conditions. These actions contribute to extend our knowledge on the sympatho-chromaffin control of the cardiovascular system and its integrated “whip-brake” circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Gerges N, Fischmeister R, Mery PF (2001) G protein-mediated inhibitory effect of nitric oxide on L-type Ca2current in rat ventricular myocytes. J Physiol 531(Pt 1):117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand-Srivastava MB (1992) Enhanced expression of inhibitory guanine nucleotide regulatory protein in spontaneously hypertensive rats. Relationship to adenylate cyclase inhibition. Biochem J 288(Pt 1):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelone T, Mazza R, Cerra MC (2012) Chromogranin-A: a multifaceted cardiovascular role in health and disease. Curr Med Chem 19(24):4042–4050

    Article  CAS  PubMed  Google Scholar 

  • Balligand JL, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89(2):481–534

    Article  CAS  PubMed  Google Scholar 

  • Biswas N, Curello E, O’Connor DT, Mahata SK (2010) Chromogranin/secretogranin proteins in murine heart: myocardial production of Chromogranin A fragment catestatin (Chga(364-384)). Cell Tissue Res 3:353–361

    Article  Google Scholar 

  • Ceconi C, Ferrari R, Bachetti T, Opasich C, Volterrani M, Colombo B, Parrinello G, Corti A (2002) Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J 12:967–974

    Article  Google Scholar 

  • Celik I, Surucu O, Dietz C, Heymach JV, Force J, Höschele I, Becker CM, Folkman J, Kisker O (2005) Therapeutic efficacy of the endostatin exhibits a biphasic dose-response curve. Cancer Res 65(23):11044–11050

    Article  CAS  PubMed  Google Scholar 

  • Cerra MC, Gallo MP, Angelonte T et al (2008) The homologous rat chromogranin A1–64 (rCGA1–64) modulates myocardial and coronary function in rat heart to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide. FASEB J 22(11):3992–4004

    Article  CAS  PubMed  Google Scholar 

  • Cohn JN, Yellin AM (1984) Learned precise cardiovascular control through graded central sympathetic stimulation. J Hypertens Suppl 2:S77–S79

    CAS  PubMed  Google Scholar 

  • Colombo B, Curnis F, Foglieni C, Monno A, Arrigoni G, Corti A (2002) Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. Cancer Res 3:941–946

    Google Scholar 

  • Corti A, Gasparri A, Chen FX, Pelagi M, Brandazza A, Sidoli A, Siccardi AG (1996) Characterisation of circulating Chromogranin A in human cancer patients. Br J Cancer 8:924–932

    Article  Google Scholar 

  • Crabos M, Coste P, Paccalin M et al (1997) Reduced basal NO-mediated dilation and decreased endothelial NO-synthase expression in coronary vessels of spontaneously hypertensive rats. J Mol Cell Cardiol 29(1):55–65

    Article  CAS  PubMed  Google Scholar 

  • Crippa L, Bianco M, Colombo B, Gasparri AM, Ferrero E, Loh YP, Curnis F, Corti A (2013) A new Chromogranin A- dependent angiogenic switch activated by thrombin. Blood 2:392–402

    Article  Google Scholar 

  • D’amico MA, Ghinassi B, Izzicupo P, Manzoli L, Baldassarre A (2014) Biological function and clinical relevance of Chromogranin A and derived peptides. Endocr Connect 2:45–54

    Article  Google Scholar 

  • Dieplinger B, Gegenhuber A, Haltmayer M, Mueller T (2009) Evaluation of novel biomarkers for the diagnosis of acute destabilized heart failure in patients with shortness of breath. Heart 18:1508–1513

    Article  Google Scholar 

  • Doggrell SA, Brown L (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39(1):89–105

    Article  CAS  PubMed  Google Scholar 

  • Dondossola E, Gasparri AM, Colombo B, Sacchi A, Curnis F, Corti A (2011) Chromogranin A restricts drug penetration and limits the ability of NGR-TNF to enhance chemotherapeutic efficacy. Cancer Res 17:5881–5890

    Article  Google Scholar 

  • Ferrero E, Magni E, Curnis F, Villa A, Ferrero ME, Corti A (2002) Regulation of endothelial cell shape and barrier function by Chromogranin A. Ann N Y Acad Sci 971:355–358

    Article  CAS  PubMed  Google Scholar 

  • Gayen JR, Zhang K, Ramachandra Rao SP, Mahata M, Chen Y, Kim HS, Naviaux RK, Sharma K, Mahata SK, O’Connor DT (2010) Role of reactive oxygen species in hyperadrenergic hypertension: biochemical, physiological, and pharmacological evidence from targeted ablation of the chromogranin A (Chga) gene. Circ Cardiovasc Genet 3(5):414–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glattard E, Angelone T, Strub JM, Corti A, Aunis D, Tota B, Metz-Boutigue MH, Goumon Y (2006) Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 14:3311–3321

    Article  Google Scholar 

  • Goetze JP, Alehagen U, Flyvbjerg A, Rehfeld JF (2014) Chromogranin A as a biomarker in cardiovascular disease. Biomark Med 1:133–140

    Article  Google Scholar 

  • Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for Chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 22:2863–2886

    Article  Google Scholar 

  • Jansson AM, Røsjø H, Omland T, Karlsson T, Hartford M, Flyvbjerg A, Caidahl K (2009) Prognostic value of circulating Chromogranin A levels in acute coronary syndromes. Eur Heart J 1:25–32

    Google Scholar 

  • Kojda G, Kottenberg K, Hacker A, Noack E (1998) Alterations of the vascular and the myocardial guanylate cyclase/cGMP-system induced by long-term hypertension in rats. Pharm Acta Helv 73(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromograninAcan be rescued by the human ortholog. J Clin Invest 115(7):1942–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217(1):247–257

    Article  CAS  PubMed  Google Scholar 

  • Miserez B, Annaert W, Dillen L, Aunis D, De Potter W (1992) Chromogranin A processing in sympathetic neurons and release of Chromogranin A fragments from sheep spleen. FEBS Lett 2:122–124

    Article  Google Scholar 

  • O’Connor DT, Pandlan MR, Carlton E, Cervenka JH, Hslao RJ (1989) Rapid radioimmunoassay of circulating Chromogranin A: in vitro stability, exploration of the neuroendocrine character of neoplasia, and assessment of the effects of organ failure. Clin Chem 35:1631–1637

    PubMed  Google Scholar 

  • Omland T, Dickstein K, Syversen U (2003) Association between plasma Chromogranin A concentration and long-term mortality after myocardial infarction. Am J Med 1:25–30

    Article  Google Scholar 

  • Pasqua T, Corti A, Gentile S, Pochini L, Bianco M, Metz-Boutigue MH, Cerra MC, Tota B, Angelone T (2013) Full- length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology 9:3353–3365

    Article  Google Scholar 

  • Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28(9):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Raab W (1969) Myocardial electrolyte derangement: crucial feature of pluricausal, so-called coronary disease. Ann N Y Acad Sci 147:627–686

    Article  CAS  PubMed  Google Scholar 

  • Samuels MA (2007) The brain-heart connection. Circulation 1:77–84

    Article  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  • Selye H, Bajusz E (1958) Notes on stress studies in cardiology: cardiac necrosis and its prevention. Schweiz Med Wochenschr 88(46):1147–1155

    CAS  PubMed  Google Scholar 

  • Slaton JW, Perrotte P, Inoue K, Dinney CP, Fidler IJ (1999) Interferon-mediated down-regulation of angiogenesis- related genes therapy of bladder cancer are dependent on optimization of biological dose and schedule. Clin Cancer Res 5(10):2726–2734

    CAS  PubMed  Google Scholar 

  • Steiner HJ, Weiler R, Ludescher C, Schmid KW, Winkler H (1990) Chromogranins A and B are colocalized with atrial natriuretic peptides in secretory granules of rat heart. J Histochem Cytochem 6:845–850

    Article  Google Scholar 

  • Stojanovic MO, Ziolo MT, Wahler GM, Wolska BM (2001) Anti-adrenergic effects of nitric oxide donor SIN-1 in rat cardiac myocytes. Am J Physiol Cell Physiol 281(1):C342–C349

    CAS  PubMed  Google Scholar 

  • Takiyyuddin MA, Parmer RJ, Kailasam MT, Cervenka JH, Kennedy B, Ziegler MG, Lin MC, Li J, Grim CE, Wright FA, O’Connor DT (1995) Chromogranin A in human hypertension. Influence of heredity. Hypertension 26(1):213–220

    Article  CAS  PubMed  Google Scholar 

  • Tota B, Angelone T, Mazza R, Cerra MC (2008) The chromogranin A-derived vasostatins: new players in the endocrine heart. Curr Med Chem 15(14):1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Tota B, Cerra MC, Gattuso A (2010) Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a ‘whip-brake’ system of the endocrine heart. J Exp Biol 213(Pt 18):3081–3103

    Article  CAS  PubMed  Google Scholar 

  • Tota B, Angelone T, Cerra MC (2014) The surging role of Chromogranin A in cardiovascular homeostasis. Front Chem 2:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54(19):1747–1762

    Article  CAS  PubMed  Google Scholar 

  • Veschini L, Crippa L, Dondossola E, Doglioni C, Corti A, Ferrero E (2011) The vasostatin-1 fragment of Chromogranin A preserves a quiescent phenotype in hypoxia-driven endothelial cells and regulates tumor neovascularization. FASEB J 11:3906–3914

    Article  Google Scholar 

  • Weiergräber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T (2000) Immunodetection of alpha1 E voltage-gated Ca (2+) channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 6:807–819

    Article  Google Scholar 

  • Yoo SH, Lewis MS (1996) Effects of pH and Ca2 on heterodimer and heterotetramer formation by chromogranin A and chromogranin B. J Biol Chem 271(29):17041–17046

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmela Cerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tota, B., Cerra, M.C. (2017). Full Lenght CgA: A Multifaceted Protein in Cardiovascular Health and Disease. In: Angelone, T., Cerra, M., Tota, B. (eds) Chromogranins: from Cell Biology to Physiology and Biomedicine. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-58338-9_7

Download citation

Publish with us

Policies and ethics