Skip to main content

Manipulating Hippocampus-Dependent Memories: To Enhance, Delete or Incept?

  • Chapter
  • First Online:
The Hippocampus from Cells to Systems

Abstract

Memory manipulation has advanced substantially in recent years to a range of new methods available to researchers. These methods include optogenetics, transcranial stimulation, deep brain stimulation, pharmacological agents and cued reactivation of memories during sleep. Here we review and evaluate findings from these methods in relation to manipulations of hippocampus-dependent memories. In doing so we shed light on the different ways in which memories can be erased, enhanced or implanted.

In a sense, he thought, all we consist of is memories. Our personalities are constructed from memories, our lives are organized around memories, our cultures are built upon the foundation of shared memories that we call history and science. But now to give up a memory, to give up knowledge, to give up the past… His entire being rebelled against the idea of forgetting.

Sphere, Michael Crichton

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Softcover Book
USD 299.99
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson MC, Ochsner KN, Kuhl B, Cooper J, Robertson E, Gabrieli SW, Glover GH, Gabrieli JDE (2004) Neural systems underlying the suppression of unwanted memories. Science 303(5655):232–235

    Article  CAS  PubMed  Google Scholar 

  • Antony JW, Gobel EW, O’Hare JK, Reber PJ, Paller KA (2012) Cued memory reactivation during sleep influences skill learning. Nat Neurosci 15(8):1114–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arzi A, Shedlesky L, Ben-Shaul M, Nasser K, Oksenberg A, Hairston IS, Sobel N (2012) Humans can learn new information during sleep. Nat Neurosci 15(10):1460–1465

    Article  CAS  PubMed  Google Scholar 

  • Barnes DC, Wilson DA (2014) Slow-wave sleep-imposed replay modulates both strength and precision of memory. J Neurosci 34(15):5134–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxendale S (2004) Memories aren’t made of this: amnesia at the movies. Br Med J 329(7480):1480

    Article  Google Scholar 

  • Bendor D, Wilson MA (2012) Biasing the content of hippocampal replay during sleep. Nat Neurosci 15:1439–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Ashbaugh AR, Saumier D, Pitman RK, Nelson M, Tremblay J, Roullet P, Birmes P (2011) Does reconsolidation occur in humans: a reply. Front Behav Neurosci 5:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G (2009) Rhythms of the brain. Oxford University Press, Oxford

    Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    Article  PubMed  PubMed Central  Google Scholar 

  • De Bitencourt RM, Pamplona FA, Takahashi RN (2013) A current overview of cannabinoids and glucocorticoids in facilitating extinction of aversive memories: potential extinction enhancers. Neuropharmacology 64:389–395

    Article  CAS  PubMed  Google Scholar 

  • De Kleine RA, Rothbaum BO, van Minnen A (2013) Pharmacological enhancement of exposure-based treatment in PTSD: a qualitative review. Eur J Psychotraumatol:4. doi:10.3402/ejpt.v4i0.21626

  • de Lavilléon G, Lacroix MM, Rondi-Reig L, Benchenane K (2015) Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci 18(4):493–495

    Article  PubMed  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126

    CAS  PubMed  Google Scholar 

  • Diekelmann S, Büchel C, Born J, Rasch B (2011) Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci 14(3):381–386

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    Article  CAS  PubMed  Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • File SE, Fluck E, Fernandes C (1999) Beneficial effects of glycine (bioglycin) on memory and attention in young and middle-aged adults. J Clin Psychopharmacol 19:506–512

    Article  CAS  PubMed  Google Scholar 

  • Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    Article  CAS  PubMed  Google Scholar 

  • Frankland PW, Köhler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Cogn Sci 36(9):497–503

    CAS  Google Scholar 

  • Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M (2012) Generation of a Synthetic Memory Trace. Science 335(6075):1513–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12(10):1222–1223

    Article  CAS  PubMed  Google Scholar 

  • Graham BM, Richardson R (2011) Intraamygdala infusion of fibroblast growth factor 2 enhances extinction and reduces renewal and reinstatement in adult rats. J Neurosci 31(40):14151–14157

    Article  CAS  PubMed  Google Scholar 

  • Groes (2016) Memory in the twenty-first century new critical perspectives from the arts, humanities, and sciences. Palgrave MacMillan, Basingstoke

    Google Scholar 

  • Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI (2011) Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 14(9):1118–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM et al (2008) Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 63(1):119–123

    Article  PubMed  Google Scholar 

  • Hardt O, Nader K, Nader L (2013) Decay happens: the role of active forgetting in memory. Trends Cogn Sci 17(3):111–120

    Article  PubMed  Google Scholar 

  • Hauner KK, Howard JD, Zelano C, Gottfried JA (2013) Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci 16:1553–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulbert JC, Henson RN, Anderson MC (2016) Inducing amnesia through systematic suppression. Nat Commun 7:11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs J, Miller J, Lee SA, Coffey T, Watrous AJ, Sperling MR et al (2016) Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron 92(5):983–990. doi:10.1016/j.neuron.2016.10.062

    Article  CAS  PubMed  Google Scholar 

  • Ji D, Wilson MA (2006) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107

    Article  PubMed  Google Scholar 

  • Kaplan GB, Moore KA (2011) The use of cognitive enhancers in animal models of fear extinction. Pharmacol Biochem Behav 99:217–228

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256(5057):675–677

    Article  CAS  PubMed  Google Scholar 

  • Kindt M, Soeter M, Vervliet B (2009) Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci 12:256–258

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama K, Honma M, Yoshiike T, Kim Y (2013) Valproic acid but not D-cycloserine facilitates sleep-dependent offline learning of extinction and habituation of conditioned fear in humans. Neuropharmacology 64:424–431

    Article  CAS  PubMed  Google Scholar 

  • Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R, Keren R et al (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68(4):521–534

    Article  CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36(6):1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Lee AM, Kanter BR, Wang D, Lim JP, Zou ME, Qiu C et al (2013) Prkcz null mice show normal learning and memory. Nature 493(7432):416–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao SM, Sandberg A (2008) The normativity of memory modification. Neuroethics 1(2):85–99

    Article  Google Scholar 

  • Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus EF, Palmer JC (1974) Reconstruction of automobile destruction: an example of the interaction between language and memory. J Verbal Learn Verbal Behav 13(5):585–589

    Article  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Ann Rev Neurosci 24(1):897–931

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Chao LL (2001) Semantic memory and the brain: structure and processes. Curr Opin Neurobiol 11:194–201

    Article  CAS  PubMed  Google Scholar 

  • Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613

    Article  CAS  PubMed  Google Scholar 

  • McClelland JL, Rogers TT (2003) The parallel distributed processing approach to semantic cognition. Nat Rev Neurosci 4(4):310–322

    Article  CAS  PubMed  Google Scholar 

  • McNamara CG, Tejero-Cantero Á, Trouche S, Campo-Urriza N, Dupret D (2014) Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat Neurosci 17(12):1658–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420(6911):70–74

    Article  CAS  PubMed  Google Scholar 

  • Misanin JR, Miller RR, Lewis DJ (1968) Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160:554–555

    Article  CAS  PubMed  Google Scholar 

  • Mohamed AD, Sahakian BJ (2012) The ethics of elective psychopharmacology. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP 15:559–571

    CAS  Google Scholar 

  • Moscovitch M, Nadel L, Winocur G, Gilboa A, Rosenbaum RS (2006) The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol 16:179–190

    Article  CAS  PubMed  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406(6797):722–726

    Article  CAS  PubMed  Google Scholar 

  • Oudiette D, Paller KA (2013) Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn Sci 17(3):142–149

    Article  PubMed  Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790):1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Rabinak CA, Angstadt M, Sripada CS, Abelson JL, Liberzon I, Milad MR, Phan KL (2013) Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology 64:396–402

    Article  CAS  PubMed  Google Scholar 

  • Ragan CI, Bard I, Singh I (2013) What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology 64:588–595

    Article  CAS  PubMed  Google Scholar 

  • Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL et al (2013) Creating a false memory in the Hippocampus. Science 341(6144):387–391

    Article  CAS  PubMed  Google Scholar 

  • Rasch B, Büchel C, Gais S, Born J (2007) Odour cues during slow-wave sleep prompt declarative memory consolidation. Science 315(5817):1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513(7518):426���430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren SQ, Yan JZ, Zhang XY et al (2013) PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO J 32(10):1365–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez MLC, Campos J, Forcato C, Leiguarda R, Maldonado H, Molina VA, Pedreira ME (2013) Enhancing a declarative memory in humans: the effect of clonazepam on reconsolidation. Neuropharmacology 64:432–442

    Article  PubMed  Google Scholar 

  • Rolls A, Makam M, Kroeger D, Colas D, de Lecea L, Heller HC (2013) Sleep to forget: interference of fear memories during sleep. Mol Psychiatry 18:1166–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudoy JD, Voss JL, Westerberg CE, Paller KA (2009) Strengthening individual memories by reactivating them during sleep. Science 326(5956):1079–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeh N, Verbitsky S, Dudai Y, Segal M (2015) Zeta inhibitory peptide, a candidate inhibitor of protein kinase Mζ, is excitotoxic to cultured hippocampal neurons. J Neurosci 35(36):12404–12411

    Article  CAS  PubMed  Google Scholar 

  • Sara SJ (2010) Reactivation, retrieval, replay and reconsolidation in and out of sleep: connecting the dots. Front Behav Neurosci 4:185. doi:10.3389/fnbeh.2010.00185

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiller D, Phelps EA (2011) Does reconsolidation occur in humans? Front Behav Neurosci 5:24. doi:10.3389/fnbeh.2011.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreiner T, Lehmann M, Rasch B (2015) Auditory feedback blocks memory benefits of cueing during sleep. Nat Commun 6:8729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano P, Yao Y, Sacktor TC (2005) Persistent phosphorylation by protein kinase Mζ maintains late-phase long-term potentiation. J Neurosci 25(8):1979–1984

    Article  CAS  PubMed  Google Scholar 

  • Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKMζ. Science 317(5840):951

    Article  CAS  PubMed  Google Scholar 

  • Shema R, Haramati S, Ron S, Hazvi S, Chen A, Sacktor TC, Dudai Y (2011) Enhancement of consolidated long-term memory by overexpression of protein kinase Mζ in the neocortex. Science 331(6021):1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21(5):1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A 100(4):2065–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiers HJ (2012) Hippocampal formation. In: Ramachandran VS (ed) The encyclopedia of human behaviour, vol 2. Academic Press, New York, pp 297–304

    Chapter  Google Scholar 

  • Spiers HJ, Bendor D (2014) Enhance, delete, incept: manipulating hippocampus-dependent memories. Brain Res Bull 105:2–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5:169–177

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  CAS  PubMed  Google Scholar 

  • Steckler T, Risbrough V (2012) Pharmacological treatment of PTSD–established and new approaches. Neuropharmacology 62(2):617–627

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262(5134):679–685

    Article  CAS  PubMed  Google Scholar 

  • Stickgold R, Walker MP (2013) Sleep-dependent memory triage: evolving generalization through selective processing. Nat Neurosci 16(2):139–145

    Article  CAS  PubMed  Google Scholar 

  • Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B, Fried I (2012) Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 366(6):502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson SA, Graham KS, Williams G, Patterson K, Kapur N, Hodges JR (2004) Dissociating person-specific from general semantic knowledge: roles of the left and right temporal lobes. Neuropsychologia 42(3):359–370

    Article  PubMed  Google Scholar 

  • Tsokas P, Hsieh C, Yao Y, Lesburguères E et al (2016) Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice. Elife 5. doi:10.7554/eLife.14846

  • Uncapher MR, Boyd-Meredith JT, Chow TE, Rissman J, Wagner AD (2015) Goal-directed modulation of neural memory patterns: implications for fMRI-based memory detection. J Neurosci 35(22):8531–8545

    Article  CAS  PubMed  Google Scholar 

  • Varela C, Weiss S, Meyer R, Halassa M, Biedenkapp J, Wilson MA, Goosens KA, Bendor D (2016) Tracking the time-dependent role of the hippocampus in memory recall using DREADDs. PLoS One 11(5):e0154374

    Article  PubMed  PubMed Central  Google Scholar 

  • Volk LJ, Bachman JL, Johnson R, Yu Y, Huganir RL (2013) PKM-(ζ) is not required for hippocampal synaptic plasticity, learning and memory. Nature 493(7432):420–423

    Article  CAS  PubMed  Google Scholar 

  • Wang JX, Rogers LM, Gross EZ, Ryals AR, Mehmet DE, Brandstatt KL, Hermiller MA, Voss JL (2014) Targeted enhancement of the cortical-hippocampal brain networks and associative memory. Science 346(6200):1054–1057

    Article  Google Scholar 

  • Wang JX, Voss JL (2015) Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. Hippocampus 25(8):877–883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Ásgeirsdóttir HN, Cohen SJ, Munchow AH, Barrera MP, Stackman RW (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64:403–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo J. Spiers or Daniel Bendor .

Editor information

Editors and Affiliations

Appendix: Movies About Memory Enhancement, Deletion, and Inception

Appendix: Movies About Memory Enhancement, Deletion, and Inception

The following appendix is an updated version of the appendix appearing in Spiers and Bendor (2014).

  • Lucy (2015): After getting overdosed with a new experimental drug that unlocks the “unused” portion of the brain, the main character develops super cognitive abilities, including telekinesis and metamorphosis. According to the movie, we use only 10 % of our brain. This is a scientific “urban legend” that is completely false. The only person that uses 10 % of their brain was perhaps the writer of this movie.

  • The Bourne Identity (2002): A highly-trained spy with no episodic memory, but all his procedural memory intact. Essentially James Bond with dementia and without the NHS.

  • Eternal Sunshine of the Spotless Mind (2004): After breaking up with his girlfriend, the main character has a procedure performed-while he sleeps, a machine zaps and deletes all the memories of his ex-girlfriend. This technology replaces more established gustatory-driven methods of recovering from a break-up, like eating several cartons of ice cream.

  • Inception (2010): Using a “shared dream” technology, the main character and his team attempt to implant false memories (inception) in an unsuspecting target. The larger question is how did they get all that “dream-hacking” equipment through airport security?

  • Limitless (2011): The main character takes a mystery pill (NZT) that substantially enhancing his cognitive abilities. The movie demonstrates some of the downsides of “genius withdrawal”.

  • The Manchurian Candidate (1962, 2004 (remake)): A solider captured by the enemy is “programmed” to become an assassin. After receiving the trigger (a queen of diamonds playing card), the solider unconsciously carriers out any instruction (such as assassinating a target), after which he forgets everything related to these actions. With the “queen of diamonds” as the trigger, best to avoid playing poker with this guy…

  • The Matrix Trilogy (1999, 2003): The year is 2199. After a war between humans and computers, humans now live inside a virtual reality environment called “the Matrix”, where humans still think it is 1999, and are unaware of what has happened. The few humans that have managed to leave the Matrix are staging a revolution, and must re-enter the Matrix to fight the computers. As the Matrix is essentially software, computer code structured by rules, humans find that it is possible to “download” new skills and learn to bend or even break the rules of physics. The writers also decide to break the rules of physics by ignoring the first law of thermodynamics, suggesting that humans within the Matrix are used as energy sources (producing more energy than they require to survive).

  • Total Recall (1990): Implanting a false memory of a vacation to Mars has bizarre consequences for the main character, unlocking a supressed memory of his true identity- a secret agent. Could this movie have been the inspiration behind Newt Gingrich’s plan to build a space colony on Mars?

  • Total Recall (2012 (remake)): A poorly done remake of the 1990 Total Recall movie. After watching this, you may want to look into some memory deletion technology (see Eternal Sunshine of the Spotless Mind)

See Baxendale (2004) for a review of movies exploring memory-related themes.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Spiers, H.J., de Cothi, W., Bendor, D. (2017). Manipulating Hippocampus-Dependent Memories: To Enhance, Delete or Incept?. In: Hannula, D., Duff, M. (eds) The Hippocampus from Cells to Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-50406-3_5

Download citation

Publish with us

Policies and ethics