Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Theories concerning the origin of oil on Earth fall into two camps: biogenic, where oil is generated by the thermal conversion of sedimentary organic matter derived from living organisms, and abiogenic, where oil is formed from mineral catalyzed reactions of nonbiological carbon deep within the Earth. Most geochemists believe that there are multiple and overwhelming lines of evidence supporting biogenic origins for petroleum. While there are known occurrences of abiogenic methane generated by geologic processes, these contribute little to petroleum resources. Economic reserves require all specific elements and processes occur within a sedimentary basin. The Petroleum System must contain: (1) at least one formation of organic-rich sediments (source rock) that has been buried to a sufficient depth by overburden rock such that petroleum is generated and expelled, (2) pathways (permeable strata and faults) that allow the petroleum to migrate, (3) reservoir rocks with sufficient porosity and permeability to accumulate economically significant quantities of petroleum, and (4) seal rock (low permeability) and structures that retain migrated petroleum within the reservoir rock. In the case of many unconventional resources, the source rock itself serves as source, reservoir, and seal.

Petroleum, composed of hydrocarbons and heteroatomic molecules, is the most complex mixture occurring in nature. The composition of petroleum generated within its source rock is influenced by the type of organisms that contributed organic matter, the environment of deposition , and thermal exposure. Most of the deposited biomolecules are chemically altered, broken apart, and reassembled into an insoluble carbonaceous material termed kerogen. Upon burial and heating, the kerogen reacts producing mostly compounds that have lost their biochemical signature; however, some of these generated molecules, termed biomarkers , preserve enough of their chemical structure that their original biological precursor can be identified. Expulsion from the source rock chemically fractionates the generated petroleum, with the expelled product enriched in gases and hydrocarbons, and retained bitumen enriched in heteroatomic polar species and asphaltenes. Petroleum composition can be further altered as it migrates and resides in reservoir rocks by physical, chemical, and biological processes. Collectively, these processes result in petroleum accumulations with a diverse range of compositions and physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 229.00
Price excludes VAT (USA)
Hardcover Book
USD 299.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pliny the Elder: Natural History, Vol. XXXV.51, tranl. by J. Bostock, H.T. Riley (Taylor Francis, London 1855)

    Google Scholar 

  2. G.R. McDonald: Georgius Agricola and the invention of petroleum, Bibl. d’Humanisme Renaiss. 73, 351–364 (2011)

    Google Scholar 

  3. Aristotle: Meteorology. In: The Complete Works of Aristole, ed. by J. Barnes (Princeton Univ. Press, Princeton 1995) pp. 555–625

    Google Scholar 

  4. J.F. Kenney: Considerations about recent predictions of impending shortages of petroleum evaluated from the perspective of modern petroleum science, Energy World 240, 16–18 (1996)

    Google Scholar 

  5. F.E. Wellings: Geological aspects the origin of oil, Inst. Petroleum J. 52, 124–130 (1966)

    Google Scholar 

  6. R.H. Dott: Hypotheses for an organic origin. In: Sourcebook for Petroleum Geology, Part 1. Genesis of Petroleum, AAPG Memoir, Vol. 5, ed. by R.H. Dott, M.J. Reynolds (American Association of Petroleum Geologists, Tulsa 1969) pp. 1–244

    Google Scholar 

  7. T.S. Hunt: Report on the Geology of Canada. Canadian Geological Survey Report: Progress to 1863 (Canadian Geological Survey, Calgary 1863)

    Google Scholar 

  8. L. Lesquereux: Report on the fossil plants of Illinois, Ill. Geol. Surv. 2, 425–470 (1866)

    Google Scholar 

  9. J.S. Newberry: The general geological relations and structure of Ohio, Ohio Geological Survey Report 1, Pt. 1 (1873) p. 222

    Google Scholar 

  10. R. Arnold, R. Anderson: Geology and Oil Resources of the Santa Maria Oil District, Santa Barbara County, California, USGS Bulletin, Vol. 322 (U.S. Geological Survey, Washington 1907)

    Google Scholar 

  11. F.W. Clarke: Data of Geochemistry, USGS Bulletin, Vol. 616 (U.S. Geological Survey, Washington 1916)

    Google Scholar 

  12. J.F. Pompeckj: Die Juraablagerungen zwischen Regensburg und Regenstauf, Geol. Jahrb. 14, 139–220 (1901)

    Google Scholar 

  13. C. Schuchert: The conditions of black shale deposition as illustrated by Kuperschiefer and Lias of Germany, Proc. Am. Philos. Soc. 54, 259–269 (1915)

    CAS  Google Scholar 

  14. A. Treibs: Chlorophyll and hemin derivatives in organic mineral substances, Angew. Chem. 49, 682–686 (1936)

    Article  CAS  Google Scholar 

  15. T.S. Oakwood, D.S. Shriver, H.H. Fall, W.J. Mcaleer, P.R. Wunz: Optical activity of petroleum, Ind. Eng. Chem. 44, 2568–2570 (1952)

    Article  CAS  Google Scholar 

  16. H. Craig: The geochemistry of the stable carbon isotopes, Geochim. Cosmochim. Acta 3, 53–92 (1953)

    Article  CAS  Google Scholar 

  17. G. Eglinton, M. Calvin: Chemical fossils, Sci. Am. 216, 32–43 (1967)

    Article  CAS  Google Scholar 

  18. J.P. Forsman, J.M. Hunt: Insoluble organic matter (kerogen) in sedimentary rocks of marine origin. In: Habitat of Oil: A Symposium, ed. by L.G. Weeks (American Association of Petroleum Geologists, Tulsa 1958) pp. 747–778

    Google Scholar 

  19. P.H. Abelson: Organic geochemistry and the formation of petroleum, Proc. 6th World Petroleum Congr. (1963) pp. 397–407

    Google Scholar 

  20. B. Tissot: Premières donnés sur les méchanismes et ala cinétique de la formation du pétrole dans les sédiments. Simulation ďun schéma réactionnel sur ordinateu, Rev. Inst. Fr. Pét. 24, 470–501 (1969)

    CAS  Google Scholar 

  21. K.E. Peters, C.C. Walters, J.M. Moldowan: The Biomarker Guide, Vol. 1/2 (Cambridge Univ. Press, New York 2005) p. 1155

    Google Scholar 

  22. K.E. Peters: Book review. The Deep Hot Biosphere by Thomas Gold, Org. Geochem. 30, 473–475 (1999)

    Article  CAS  Google Scholar 

  23. M.-P. Berthelot: Chimie Organique Fondée sur la Synthèse (Mallet-Bachelier, Paris 1860)

    Google Scholar 

  24. D. Mendeleev: L’origine du petrole, Revue Scientifique 2e, Vol. VIII (1877) pp. 409–416

    Google Scholar 

  25. D. Mendeleev: The Principles of Chemistry, Vol. 1, 2nd edn. (Collier, New York 1902) p. 552, translated from the 6th Russian edn.

    Google Scholar 

  26. N.A. Kudryavtsev: Against the organic hypothesis of the origin of petroleum, Petroleum Econ. (Neft. Khoz.) 9, 17–29 (1951)

    Google Scholar 

  27. J. Cronin, S. Pizzarello, D.P. Cruikshank: Organic matter in carbonaceous chondrites, planetary satellites, asteroids, and comets. In: Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Mathews (University of Arizona Press, Tucson 1988) pp. 819–857

    Google Scholar 

  28. F. Hoyle: Frontiers of Astronomy (Heineman, London 1955)

    Google Scholar 

  29. T. Gold: The origin of natural gas and petroleum and the prognosis for future supplies, Annu. Rev. Energy 10, 53–77 (1985)

    Article  Google Scholar 

  30. T. Gold: The Deep Hot Biosphere (Copernicus, New York 1999)

    Book  Google Scholar 

  31. R.A. Kerr: When a radical experiment goes bust, Science 247, 1177 (1990)

    Article  CAS  Google Scholar 

  32. G. Etiope, B. Sherwood Lollar: Abiotic methane on Earth, Rev. Geophys. 51, 276–299 (2013)

    Article  Google Scholar 

  33. B.S. Sherwood Lollar, S.K. Frape, S.M. Weise, P. Fritz, S.A. Macko, J.A. Whelan: Abiogenic methanogenesis in crystalline rocks, Geochim. Cosmochim. Acta 57, 5087–5097 (1993)

    Article  Google Scholar 

  34. T.M. McCollom, J.S. Seewald: A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine, Geochim. Cosmochim. Acta 65(21), 3769–3778 (2001)

    Article  CAS  Google Scholar 

  35. T.M. McCollom: Formation of meteorite hydrocarbons from thermal decomposition of siderite (FeCO3), Geochim. Cosmochim. Acta 67(2), 311–317 (2003)

    Article  CAS  Google Scholar 

  36. J. Potter, A.H. Rankin, P.J. Treloar: The nature and origin of abiogenic hydrocarbons in the alkaline igneous intrusions, Khibina and Lovozero in the Kola Peninsula, Hydrocarbons in Crystalline Rocks, N.W. Geological Society London (2001)

    Google Scholar 

  37. T.M. McCollom: Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface, Rev. Mineral. Geochem. 75, 467–494 (2013)

    Article  CAS  Google Scholar 

  38. B. Sherwood Lollar, T.D. Westgate, J.A. Ward, G.F. Slater, G. Lacrampe-Couloume: Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs, Nature 416, 522–524 (2002)

    Article  CAS  Google Scholar 

  39. G.P. Glasby: Abiogenic origin of hydrocarbons: An historical overview, Resour. Geol. 56, 83–96 (2006)

    Article  CAS  Google Scholar 

  40. L.B. Magoon, W.G. Dow (Eds.): The Petroleum System – From Source to Trap, AAPG Memoir Ser, Vol. 60 (American Association of Petroleum Geologists, Tulsa 1994) p. 655

    Google Scholar 

  41. L.B. Magoon, E.A. Beaumont: Petroleum systems. In: Handbook of Petroleum Geology: Exploring for Oil and Gas Traps, ed. by E.A. Beaumont, N.H. Foster (American Association of Petroleum Geologists, Tulsa 1999) pp. 3–34

    Google Scholar 

  42. A. Beaumont, N.H. Foster: Treatise of Petroleum Geology/Handbook of Petroleum Geology: Exploring for Oil and Gas Traps (The American Association of Petroleum Geologists, Tulsa 1999)

    Google Scholar 

  43. B.P. Tissot, D.H. Welte: Petroleum Formation and Occurrence (Springer, New York 1984)

    Book  Google Scholar 

  44. J.M. Hunt: Petroleum Geochemistry and Geology (W.H. Freeman, New York 1996) p. 743

    Google Scholar 

  45. K.E. Peters, M.G. Fowler: Applications of petroleum geochemistry to exploration and reservoir management, Org. Geochem. 33, 5–36 (2002)

    Article  CAS  Google Scholar 

  46. M.A. Arthur, B.B. Sageman: Marine black shales: A review of depositional mechanisms and significance of ancient deposits, Annu. Rev. Earth Planet. Sci. 22, 499–551 (1994)

    Article  CAS  Google Scholar 

  47. D.E. Canfield: Factors influencing organic carbon preservation in marine sediments, Chem. Geol. 114, 315–329 (1994)

    Article  CAS  Google Scholar 

  48. R.V. Tyson: Sedimentary Organic Matter: Organic Facies and Palynofacies (Chapman and Hall, London 1995) p. 615

    Book  Google Scholar 

  49. T.F. Pedersen, S.E. Calvert: Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?, Am. Assoc. Petroleum Geol. Bull. 74, 454–466 (1990)

    CAS  Google Scholar 

  50. W. Michaelis, R. Seifert, K. Nauhaus, T. Treude, V. Thiel, M. Blumenberg, K. Knittel, A. Gieseke, K. Peterknecht, T. Pape, A. Boetius, R. Amann, B.B. Jørgensen, F. Widdel, J. Peckmann, N.V. Pimenov, M.B. Gulin: Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane, Science 297, 1013–1015 (2002)

    Google Scholar 

  51. G.L. Demaison, G.T. Moore: Anoxic environments and oil source bed genesis, AAPG Bulletin 64, 1179–1209 (1980)

    CAS  Google Scholar 

  52. M.P. Koopmans, S. Schouten, M.E.L. Kohnen, J.S. Sinninghe Damsté: Restricted utility of aryl isoprenoids as indicators for photic zone anoxia, Geochim. Cosmochim. Acta 60, 4467–4496 (1996)

    Article  CAS  Google Scholar 

  53. P. Metzger, C. Largeau, E. Casadevall: Lipids and macromolecular lipids of the hydrocarbon-rich microalga, Botryococcus braunii, Prog. Chem. Org. Nat. Prod. 57, 1–70 (1991)

    CAS  Google Scholar 

  54. E.W. Tegelaar, J.W. De Leeuw, S. Derenne, C. Largeau: A reappraisal of kerogen formation, Geochim. Cosmochim. Acta 53, 3103–3106 (1989)

    Article  CAS  Google Scholar 

  55. B. Durand (Ed.): Kerogen. Insoluble Organic Matter from Sedimentary Rocks (Éditions Technip, Paris 1980)

    Google Scholar 

  56. J. Espitalié, J.L. Laporte, M. Madec, F. Marquis, P. Leplat, J. Paulet, A. Boutefu: Méthode rapide de characterization des roches mères, de leur potentiel pétrolier et de leur degré d’évolution, Rev. Inst. Fr. Pet. 32, 23–42 (1977)

    Article  Google Scholar 

  57. W.L. Orr: Kerogen/asphaltene/sulphur relationships in sulphur-rich Monterey oils, Org. Geochem. 10, 449–516 (1986)

    Article  Google Scholar 

  58. D.W. van Krevelen: Coal (Elsevier, New York 1961)

    Google Scholar 

  59. J.S. Sinninghe Damsté, F.X.C. de las Heras, P.F. van Bergen, J.W. de Leeuw: Characterization of Tertiary Catalan lacustrine oil shales; discovery of extremely organic sulphur-rich Type I kerogens, Geochim. Cosmochim. Acta 57, 389–415 (1993)

    Article  Google Scholar 

  60. K. Grice, S. Schouten, K.E. Peters, J.S. Sinninghe Damsté: Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China, Org. Geochem. 29, 1745–1764 (1998)

    Article  CAS  Google Scholar 

  61. J. Connan: Time-temperature relation in oil genesis, AAPG Bulletin 58, 2516–2521 (1974)

    Google Scholar 

  62. B.P. Tissot, R. Pelet, P. Ungerer: Thermal history of sedimentary basins and kinetics of oil and gas generation, AAPG Bulletin 70, 656 (1986)

    Google Scholar 

  63. P. Ungerer, F. Bessis, P.Y. Chenet, B. Durand, E. Nogaret, A. Chiarelli, J.L. Oudin, J.F. Perrin: Geological and geochemical models in oil exploration; principles and practical examples. In: Petroleum Geochemistry and Basin Evaluation, ed. by G. Demaison, R.J. Murris (American Association of Petroleum Geologists, Tulsa 1984) pp. 53–77

    Google Scholar 

  64. F.D. Mango: Transition metal catalysis in the generation of petroleum and natural gas, Geochim. Cosmochim. Acta 56, 553–555 (1992)

    Article  CAS  Google Scholar 

  65. R.W. Sabate, C.C. Baker: Synergetic catalysis in hydrocarbon generation, Gulf Coast Assoc. Geol. Soc. Trans. 44, 657–661 (1994)

    Google Scholar 

  66. M.A.A. Schoonen, Y. Xu, D.R. Strongin: An introduction to geocatalysis, J. Geochem. Explor. 62, 201–215 (1998)

    Article  CAS  Google Scholar 

  67. C.D. McAuliffe: Oil and gas migration: Chemical and physical constraints. In: Problems of Petroleum Migration, AAPG Geological Studies, Vol. 10, ed. by W.H. Roberts, R.J. Cordell (American Association of Petroleum Geologists, Tulsa 1980) pp. 89–107

    Google Scholar 

  68. E.I. Sandvik, W.A. Young, D.J. Curry: Expulsion from hydrocarbon sources; the role of organic absorption, Org. Geochem. 19, 77–87 (1992)

    Article  CAS  Google Scholar 

  69. A.S. Pepper, P.J. Corvi: Simple kinetic models of petroleum formation; Part III, Modelling an open system, Mar. Petroleum Geol. 12, 417–452 (1995)

    Article  CAS  Google Scholar 

  70. M.M. Thomas, J.A. Clouse: Primary migration by diffusion through kerogen; I, Model experiments with organic-coated rocks, Geochim. Cosmochim. Acta 54, 2775–2779 (1990)

    Article  CAS  Google Scholar 

  71. M.M. Thomas, J.A. Clouse: Primary migration by diffusion through kerogen; II, Hydrocarbon diffusivities in kerogen, Geochim. Cosmochim. Acta 54, 2781–2792 (1990)

    Article  CAS  Google Scholar 

  72. M.M. Thomas, J.A. Clouse: Primary migration by diffusion through kerogen; III, Calculation of geologic fluxes, Geochim. Cosmochim. Acta 54, 2793–2797 (1990)

    Article  CAS  Google Scholar 

  73. J.G. Stainforth, J.E.A. Reinders: Primary migration of hydrocarbons by diffusion through organic matter networks, and its effect on oil and gas generation, Org. Geochem. 16, 61–74 (1990)

    Article  CAS  Google Scholar 

  74. U. Ritter: Solubility of petroleum compounds in kerogen: Implications for petroleum expulsion, Org. Geochem. 34, 319–326 (2003)

    Article  CAS  Google Scholar 

  75. A.S. Pepper: Estimating the petroleum expulsion behaviour of source rocks; a novel quantitative approach. In: Petroleum Migration, Geological Society of London Special Publication, Vol. 59, ed. by W.A. England, A.J. Fleet (Geological Society of London, London 1991) pp. 9–31

    Google Scholar 

  76. L.J. Shadle, M.R. Khan, G.Q. Zhang, R.A. Bajura: Investigation of oil shale and coal structures by swelling in various solvents, Div. Petroleum Chem. Prepr. 34(1), 55–61 (1989)

    CAS  Google Scholar 

  77. J.W. Larsen, S. Li: Changes in the macromolecular structure of a Type I kerogen during maturation, Energy Fuels 11, 897–901 (1987)

    Article  Google Scholar 

  78. J.W. Larsen, S. Li: An initial comparison of the interactions of type I and III kerogens with organic liquids, Org. Geochem. 26, 305–309 (1987)

    Article  Google Scholar 

  79. J.W. Larsen, S. Li: Solvent swelling studies of Green River kerogen, Energy Fuels 8, 932–936 (1994)

    Article  CAS  Google Scholar 

  80. B. Tissot: Migration of hydrocarbons in sedimentary basins: A geological, geochemical and historical perspective, Collect. Colloq. Sémin. Inst. Fr. Pétrole 45, 1–19 (1987)

    Google Scholar 

  81. P. Ungerer: State of the art of research in kinetic modelling of oil formation and expulsion, Org. Geochem. 16, 1–25 (1990)

    Article  CAS  Google Scholar 

  82. A.K. Burnham, R.L. Braun: Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks, Org. Geochem. 16, 27–39 (1990)

    Article  CAS  Google Scholar 

  83. P.A. Dickey: Possible migration of oil from source rock in oil phase, AAPG Bulletin 72, 337–345 (1975)

    Google Scholar 

  84. V.V. Palciauskas, P.A. Domenico: Microfracture development in compacting sediments: Relation to hydrocarbon-maturation kinetics, AAPG Bulletin 64, 927–937 (1980)

    Google Scholar 

  85. U. Mann: Sedimentological and petrophysical aspects of primary migration pathways. In: Sediments and Environmental Geochemistry, ed. by D. Heling, P. Rothe, U. Förstner, P. Stoffers (Springer, New York 1990) pp. 152–178

    Chapter  Google Scholar 

  86. S.J. Düppenbecker, D.H. Welte: Petroleum expulsion from source rocks; insights from geology, geochemistry and computerized numerical modelling, Proc. 13th World Petroleum Congr. (1992) pp. 165–177, WPC-24120

    Google Scholar 

  87. L.C. Price: Primary petroleum migration from shales with oxygen-rich organic matter, J. Petroleum Geol. 12, 289–324 (1989)

    Article  CAS  Google Scholar 

  88. D. Leythaeuser, H.S. Poelchau: Expulsion of petroleum from type III kerogen source rocks in gaseous solution; modeling of solubility fractionation. In: Petroleum Migration, Vol. 59, ed. by W.A. England, A.J. Fleet (Geological Society of London, London 1991) pp. 33–46

    Google Scholar 

  89. C. Barker: Aquathermal pressuring: Role of temperature in development of abnormal pressure zones, AAPG Bulletin 56, 2068–2071 (1972)

    Google Scholar 

  90. K. Magara: Agents for primary hydrocarbon migration; A review. In: Problems of Petroleum Migration, ed. by W.H. Roberts III, R.J. Cordell (American Association of Petroleum Geologists, Tulsa 1980) pp. 33–45

    Google Scholar 

  91. W. De la Rue, H. Miller: Chemical examination of Burmese naphtha or Rangoon tar, Proc. R. Soc. Lond. 8, 221–228 (1985)

    Article  Google Scholar 

  92. F.D. Rossini, B.J. Mair: Composition of petroleum. In: Progress in Petroleum Technology, Vol. 5 (American Chemical Society, Washington 1951) pp. 334–352

    Chapter  Google Scholar 

  93. F.D. Rossini, B.J. Mair: The work of the API Research Project 6 on the composition of petroleum, Proc. 5th World Petroleum Congr., New York (1959) pp. 223–245

    Google Scholar 

  94. Y.M. Rabkin, J.J. Lafitte-Houssat: Cooperative research in petroleum chemistry, Scientometrics 1, 327–338 (1979)

    Article  Google Scholar 

  95. E.E. Bray, E.D. Evans: Distribution of n-paraffins as a clue to recognition of source beds, Geochim. Cosmochim. Acta 22, 2–15 (1961)

    Article  CAS  Google Scholar 

  96. C.S. Hsu, D. Drinkwater: GC/MS in the petroleum industry. In: Current Practice in Gas Chromatography-Mass Spectrometry, Chromatography Science Series, Vol. 86, ed. by W.W.A. Niessen (Dekker Marcel, New York 2001) pp. 55–94

    Google Scholar 

  97. A.G. Marshall, R.P. Rodgers: Petroleomics: Chemistry of the underworld, Proc. Natl. Acad. Sci. USA 105, 18090–18095 (2008)

    Article  CAS  Google Scholar 

  98. C.S. Hsu, C.L. Hendrickson, R.P. Rodgers, A.M. McKenna, A.G. Marshall: Petroleomics: Advanced molecular probe for petroleum heavy ends, J. Mass Spectrom. 46, 337–343 (2011)

    Article  CAS  Google Scholar 

  99. A.M. McKenna, J.T. Williams, J.C. Putman, C. Aeppli, C.M. Reddy, D.L. Valentine, K.L. Lemkau, M.Y. Kellermann, J.J. Savory, N.K. Kaiser, A.G. Marshall, R.P. Rodgers: Unprecedented ultrahigh resolution FT-ICR mass spectrometry and parts-per-billion mass accuracy enable direct characterization of nickel and vanadyl porphyrins in petroleum from natural seeps, Energy Fuels 28, 2454–2464 (2014)

    Article  CAS  Google Scholar 

  100. O.C. Mullins, H. Sabbah, J. Eyssautier, A.E. Pomerantz, L. Barré, A.B. Andrews, Y. Ruiz-Morales, F. Mostowfi, R. McFarlane, L. Goual, R. Lepkowicz, T.M. Cooper, J. Orbulescu, R.M. Leblanc, J.C. Edwards, R.N. Zare: Advances in asphaltene science and the Yen-Mullins model, Energy Fuels 26, 3986–4003 (2012)

    Article  CAS  Google Scholar 

  101. A.H. Alshareef, A. Scherer, X. Tan, K. Azyat, J.M. Stryker, R.R. Tykwinski, M.R. Gray: Formation of archipelago structures during thermal cracking implicates a chemical mechanism for the formation of petroleum asphaltenes, Energy Fuels 25, 2130–2136 (2011)

    Article  CAS  Google Scholar 

  102. F. Alvarez-Ramírez, Y. Ruiz-Morales: Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studies, Energy Fuels 27, 1791–1808 (2013)

    Article  CAS  Google Scholar 

  103. A. Werner, F. Behar, J.C. de Hemptinne, E. Behar: Thermodynamic properties of petroleum fluids during expulsion and migration from source rocks, Org. Geochem. 24, 1079–1095 (1996)

    Article  CAS  Google Scholar 

  104. L.C. Kuo: Gas exsolution during fluid migration and its relation to overpressure and petroleum accumulation, Mar. Petroleum Geol. 14, 221–229 (1997)

    Article  CAS  Google Scholar 

  105. R. di Primio, V. Dieckmann, N. Mills: PVT and phase behaviour analysis in petroleum exploration, Org. Geochem. 29, 207–222 (1998)

    Article  Google Scholar 

  106. S.E. Palmer: Effect of water washing on C15+ hydrocarbon fraction of crude oils from northwest Palawan, Phillipines, AAPG Bulletin 68, 137–149 (1984)

    CAS  Google Scholar 

  107. J. Connan: Biodegradation of crude oils in reservoirs. In: Advances in Petroleum Geochemistry, Vol. 1, ed. by J. Brooks, D.H. Welte (Academic Press, London 1984) pp. 299–335

    Chapter  Google Scholar 

  108. W.K. Seifert, J.M. Moldowan, G.J. Demaison: Source correlation of biodegraded oils, Org. Geochem. 6, 633–643 (1984)

    Article  CAS  Google Scholar 

  109. W.L. Orr: Changes in sulfur content and isotopic ratios of sulfur during petroleum maturation-Study of Big Horn Paleozoic oils, AAPG Bulletin 58, 2295–2318 (1974)

    Google Scholar 

  110. H.G. Machel: Bacterial and thermochemical sulfate reduction in diagenetic settings – Old and new insights, Sediment. Geol. 140, 143–175 (2001)

    Article  CAS  Google Scholar 

  111. A. Wilhelms, S.R. Larter: Origin of tar mats in petroleum reservoirs: Part II: Formation mechanisms for tar mats, Mar. Petroleum Geol. 11, 442–456 (1994)

    Article  CAS  Google Scholar 

  112. R. Marzi, B.E. Torkelson, R.K. Olson: A revised carbon preference index, Org. Geochem. 20, 1303–1306 (1993)

    Article  CAS  Google Scholar 

  113. R.G. Loucks, R.M. Reed, S.C. Ruppel, U. Hammes: Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores, AAPG Bulletin 96, 1071–1098 (2012)

    Article  CAS  Google Scholar 

  114. J.B. Roen: Introductory review – Devonian and Mississippian black shale, eastern North America. In: Petroleum Geology of the Devonian and Mississippian Black Shale of Eastern North America, USGS Bulletin, Vol. 1909, ed. by J.B. Roen, R.C. Kepferle (U.S. Geological Survey, Washington 1993) pp. A1–A8

    Google Scholar 

  115. D.B. Steward: The Barnett Shale Play: Phoenix of the Fort Worth Basin: A History (The Fort Worth Geological Society, Fort Worth 2007)

    Google Scholar 

  116. EIA: Natural Gas Annual 2011. (Energy Information Administration, Washington 2013) p. 201

    Google Scholar 

  117. EIA: World shale gas resources: An initial assessment of 14 regions outside the United States (U.S. Energy Information Administration, Washington 2011) p. 365

    Google Scholar 

  118. EIA: U.S. Crude Oil and Natural Gas Proved Reserves, 2012 (U.S. Energy Information Administration, Washington 2014) p. 43

    Google Scholar 

  119. J.W. Schmoker, T.C. Hester: Organic carbon in Bakken Formation, United States portion of Williston Basin, AAPG Bulletin 67, 2165–2174 (1983)

    CAS  Google Scholar 

  120. W.C. Dawson, W.R. Almon: Eagle Ford Shale variability: Sedimentologic influences on source and reservoir character in an unconventional resource unit, Gulf Coast Assoc. Geol. Soc. Trans. 60, 181–190 (2010)

    Google Scholar 

  121. A. Al-Jubori, S. Johnston, C. Boyer, S.W. Lambert, O.A. Bustos, J.C. Pashin, A. Wray: Coalbed methane: Clean energy for the world, Oilfield Rev. 21, 4–13 (2009)

    CAS  Google Scholar 

  122. M. Mastalerz: Coal bed methane: Reserves, production and future outlook. In: Future Energy, 2nd edn., ed. by T.M. Letcher (Elsevier, Amsterdam 2014) pp. 145–158

    Chapter  Google Scholar 

  123. D. Strąpoć, M. Mastalerz, K. Dawson, J. Macalady, A.V. Callaghan, B. Wawrik, C. Turich, M. Ashby: Biogeochemistry of microbial coal-bed methane, Annu. Rev. Earth Planet. Sci. 39, 617–656 (2011)

    Article  CAS  Google Scholar 

  124. R. Sander, L.D. Connell: A probabilistic assessment of enhanced coal mine methane drainage (ECMM) as a fugitive emission reduction strategy for open cut coal mines, Int. J. Coal Geol. 131, 288–303 (2014)

    Article  CAS  Google Scholar 

  125. S. Shahnazar, N. Hasan: Gas hydrate formation condition: Review on experimental and modeling approaches, Fluid Phase Equilib. 379, 72–85 (2014)

    Article  CAS  Google Scholar 

  126. A.V. Milkov: Global estimates of hydrate-bound gas in marine sediments: How much is really out there?, Earth-Sci. Rev. 6, 183–197 (2004)

    Article  CAS  Google Scholar 

  127. R. Boswell, T.S. Collett: Current perspectives on gas hydrate resources, Energy Envirion. Sci. 4, 1206–1215 (2011)

    Article  CAS  Google Scholar 

  128. R. Boswell, K. Yamamoto, S.-R. Lee, T. Collett, P. Kumar, S. Dallimore: Methane hydrates. In: Future Energy, 2nd edn., ed. by T.M. Letcher (Elsevier, Amsterdam 2014) pp. 159–178

    Chapter  Google Scholar 

  129. T. Collett, A. Johnson, C. Knapp, R. Boswell: Natural Gas Hydrates – A Review, AAPG Memoir, Vol. 89 (American Association of Petroleum Geologists, Tulsa 2009) pp. 146–220

    Google Scholar 

  130. Y. Makogon, V. Tsarev, N. Cherskiy: Formation of large natural gas fields in zones of permanently low temperatures, Dokl. Acad. Nauk SSR 205, 700–703 (1972)

    CAS  Google Scholar 

  131. S.R. Schutter: Hydrocarbon occurrence and exploration in and around igneous rocks, Geol. Soc. Lond. Special Publ. 214, 7–33 (2003)

    Article  CAS  Google Scholar 

  132. S.R. Schutter: Occurrences of hydrocarbons in and around igneous rocks, Geol. Soc. Lond. Special Publ. 214, 35–68 (2003)

    Article  Google Scholar 

  133. P.D. Jenden, D.R. Hilton, I.R. Kaplan, H. Craig: Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Future of Energy Gases, USGS Professional Paper, Vol. 1570, ed. by D. Howell (U.S. Geological Survey, Washington 1993) pp. 31–35

    Google Scholar 

  134. P. Szatmari, T.C.O. da Fonseca, N.F. Miekeley: Mantle-like trace element composition of petroleum – Contributions from serpentinizing peridotites. In: Tectonics, ed. by D. Closson (InTech, Rijeka 2011) pp. 332–358

    Google Scholar 

  135. Z. Jin, L. Zhang, Y. Wang, Y. Cui, K. Millae: Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China, Episodes 32, 167–176 (2009)

    Google Scholar 

  136. Y. Ni, J. Dai: Geochemical characteristics of abiogenic alkane gases, Petroleum Sci. 6, 327–338 (2009)

    Article  CAS  Google Scholar 

  137. R.D. Lorenz, K.L. Mitchell, R.L. Kirk, A.G. Hayes, O. Aharonson, H.A. Zebker, P. Paillou, J. Radebaugh, J.I. Lunine, M.A. Janssen, S.D. Wall, R.M. Lopes, B. Stiles, S. Ostro, G. Mitri, E.R. Stofan: Titan’s inventory of organic surface materials, Geophys. Res. Lett. 25(2), L2206 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford C. Walters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walters, C.C. (2017). Origin of Petroleum. In: Hsu, C.S., Robinson, P.R. (eds) Springer Handbook of Petroleum Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-49347-3_10

Download citation

Publish with us

Policies and ethics