Skip to main content

Microelectrode Recording-Based Targeting for Parkinson’s Disease Surgery

  • Chapter
  • First Online:
Surgery for Parkinson's Disease

Abstract

Deep brain stimulation surgery is a highly effective treatment for motor symptoms of Parkinson’s disease, but its efficacy and safety depend on precise positioning of the stimulator in subcortical structures. Microelectrode recording (MER) allows for localization of subthalamic nucleus (STN), globus pallidus interna (GPi), and surrounding structures to within fractions of a millimeter. Moreover, MER can be used to identify parts of these nuclei that represent parts of the body that are affected by PD. There are some drawbacks, including the need for multiple passes through the brain, as well as the need for specialized training and personnel, but MER remains the most common method for localization of DBS electrodes. In this chapter, we review the basics of the mapping of STN and GPi and describe some common pitfalls in recording. We also describe how to alter trajectories if recordings are suboptimal. We end by describing some future directions, including imaging-based targeting and automated detection of subcortical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Hardcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci. 2000;20(20):7766–75. PubMed PMID: 11027240.

    Article  CAS  Google Scholar 

  2. Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119(2):301–6. https://doi.org/10.3171/2013.4.JNS122324. PubMed PMID: 23724986.

    Article  PubMed  Google Scholar 

  3. Gildenberg PL. Spiegel and Wycis—the early years. Stereotact Funct Neurosurg. 2001;77(1–4):11–6. PubMed PMID: 12378049.

    Article  CAS  Google Scholar 

  4. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50. PubMed PMID: 17777432.

    Article  CAS  Google Scholar 

  5. Spiegel EA. Methodological problems in stereoencephalotomy. Confin Neurol. 1965;26(3):125–32. PubMed PMID: 5329807.

    Article  CAS  Google Scholar 

  6. Albe-Fessard D, Arfel G, Guiot G, Derome P, Guilbaud G. Thalamic unit activity in man. Electroencephalogr Clin Neurophysiol. 1967;Suppl 25:132+. PubMed PMID: 4165777.

    Google Scholar 

  7. DeLong MR, Crutcher MD, Georgopoulos AP. Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol. 1985;53(2):530–43. PubMed PMID: 3981228.

    Article  CAS  Google Scholar 

  8. Lenz FA, Vitek JL, DeLong MR. Role of the thalamus in parkinsonian tremor: evidence from studies in patients and primate models. Stereotact Funct Neurosurg. 1993;60(1–3):94–103. Review. PubMed PMID: 8511438.

    Article  CAS  Google Scholar 

  9. Kelly PJ, Ahlskog JE, Goerss SJ, Daube JR, Duffy JR, Kall BA. Computer-assisted stereotactic ventralis lateralis thalamotomy with microelectrode recording control in patients with Parkinson’s disease. Mayo Clin Proc. 1987;62(8):655–64. PubMed PMID: 2439850.

    Article  CAS  Google Scholar 

  10. Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchinson WD, Dostrovsky JO. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346(8987):1383–7. PubMed PMID: 7475819.

    Article  CAS  Google Scholar 

  11. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–6. PMID: 3329873.

    CAS  PubMed  Google Scholar 

  12. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6. PubMed PMID: 1671433.

    Article  CAS  Google Scholar 

  13. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339(16):1105–11. PubMed PMID: 9770557.

    Article  CAS  Google Scholar 

  14. Andrade-Souza YM, Schwalb JM, Hamani C, Eltahawy H, Hoque T, Saint-Cyr J, Lozano AM. Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery. 2008;62(Suppl 2):875–83. PubMed PMID: 15794832.

    PubMed  Google Scholar 

  15. Lozano AM, Hutchison WD, Dostrovsky JO. Microelectrode monitoring of cortical and subcortical structures during stereotactic surgery. In: Meyerson BA, Ostertag C, editors. Advances in stereotactic and functional neurosurgery 11. New York: Springer Vienna; 1995. p. 30–4.

    Chapter  Google Scholar 

  16. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, Bush G, Eskandar EN. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488(7410):218–21. https://doi.org/10.1038/nature11239. PubMed PMID: 22722841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mian MK, Sheth SA, Patel SR, Spiliopoulos K, Eskandar EN, Williams ZM. Encoding of rules by neurons in the human dorsolateral prefrontal cortex. Cereb Cortex. 2014;24(3):807–16. https://doi.org/10.1093/cercor/bhs361. PubMed PMID: 23172774.

    Article  PubMed  Google Scholar 

  18. Tolleson C, Stroh J, Ehrenfeld J, Neimat J, Konrad P, Phibbs F. The factors involved in deep brain stimulation infection: a large case series. Stereotact Funct Neurosurg. 2014;92(4):227–33. https://doi.org/10.1159/000362934. Review. PubMed PMID: 25096381.

    Article  PubMed  Google Scholar 

  19. Sillay KA, Larson PS, Starr PA. Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery. 2008;62(2):360–7. https://doi.org/10.1227/01.neu.0000316002.03765.33. PubMed PMID:18382313.

    Article  PubMed  Google Scholar 

  20. Gorgulho A, De Salles AA, Frighetto L, Behnke E. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg. 2005;102(5):888–96. PubMed PMID: 15926715.

    Article  Google Scholar 

  21. Xiaowu H, Xiufeng J, Xiaoping Z, Bin H, Laixing W, Yiqun C, Jinchuan L, Aiguo J, Jianmin L. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord. 2010;16(2):96–100. https://doi.org/10.1016/j.parkreldis.2009.07.013. PubMed PMID: 19682943.

    Article  PubMed  Google Scholar 

  22. Deep-Brain Stimulation for Parkinson’s Disease Study Group, Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63. PubMed PMID: 11575287.

    Article  Google Scholar 

  23. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32. PubMed PMID: 15792511.

    Article  Google Scholar 

  24. Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64(4):754–63. https://doi.org/10.1227/01.NEU.0000339173.77240.34. PubMed PMID: 19349834.

    Article  PubMed  Google Scholar 

  25. Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012;116(1):84–94. https://doi.org/10.3171/2011.8.JNS101407. Review. PubMed PMID: 21905798.

    Article  PubMed  Google Scholar 

  26. Montgomery EB Jr. Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov Disord. 2012;27(11):1387–91. https://doi.org/10.1002/mds.25000. PubMed PMID: 22508394.

    Article  PubMed  Google Scholar 

  27. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL. Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17(Suppl 3):S145–9. PubMed PMID: 11948769.

    Article  Google Scholar 

  28. Snellings A, Sagher O, Anderson DJ, Aldridge JW. Identification of the subthalamic nucleus in deep brain stimulation surgery with a novel wavelet-derived measure of neural background activity. J Neurosurg. 2009;111(4):767–74. https://doi.org/10.3171/2008.11.JNS08392. PubMed PMID: 19344225.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ, Beric A. Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery. 2002;50(1):58–69. PubMed PMID: 11844235.

    PubMed  Google Scholar 

  30. Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol. 1998;44(4):622–8. PubMed PMID: 9778260.

    Article  CAS  Google Scholar 

  31. Plaha P, Khan S, Gill SS. Bilateral stimulation of the caudal zona incerta nucleus for tremor control. J Neurol Neurosurg Psychiatry. 2008;79(5):504–13. PubMed PMID: 18037630.

    Article  CAS  Google Scholar 

  32. Fytagoridis A, Sandvik U, Aström M, Bergenheim T, Blomstedt P. Long term follow-up of deep brain stimulation of the caudal zona incerta for essential tremor. J Neurol Neurosurg Psychiatry. 2012;83(3):258–62. https://doi.org/10.1136/jnnp-2011-300765. PubMed PMID: 22205676.

    Article  PubMed  Google Scholar 

  33. Bakay RA, editor. Movement disorder surgery: the essentials. New York: Thieme; 2009.

    Google Scholar 

  34. Follett KA, Torres-Russotto D. Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: which target? Parkinsonism Relat Disord. 2012;18(Suppl 1):S165–7. https://doi.org/10.1016/S1353-8020(11)70051-7. Review. PubMed PMID: 22166422.

    Article  PubMed  Google Scholar 

  35. Lozano AM, Hutchison WD. Microelectrode recordings in the pallidum. Mov Disord. 2002;17(Suppl 3):S150–4. PubMed PMID: 11948770.

    Article  Google Scholar 

  36. Guridi J, Gorospe A, Ramos E, Linazasoro G, Rodriguez MC, Obeso JA. Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: imaging versus electrophysiological mapping. Neurosurgery. 1999;45(2):278–89. PubMed PMID: 10449072.

    Article  CAS  Google Scholar 

  37. Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, Dostrovsky JO. Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport. 1994;5(12):1533–7. PubMed PMID: 7948856.

    Article  CAS  Google Scholar 

  38. Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain. 2000;123(Pt 9):1767–83. Review. PubMed PMID: 10960043.

    Article  Google Scholar 

  39. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport. 2005;16(17):1877–81. PubMed PMID: 16272871

    Article  Google Scholar 

  40. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129(7):1732–47.

    Article  Google Scholar 

  41. Fluchere F, Witjas T, Eusebio A, Bruder N, Giorgi R, Leveque M, Peragut JC, Azulay JP, Regis J. Controlled general anaesthesia for subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2014;85(10):1167–73. https://doi.org/10.1136/jnnp-2013-305323. PubMed PMID: 24249783.

    Article  CAS  PubMed  Google Scholar 

  42. Wong S, Baltuch GH, Jaggi JL, Danish SF. Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. J Neural Eng. 2009;6(2):026006. https://doi.org/10.1088/1741-2560/6/2/026006. PubMed PMID: 19287077.

    Article  CAS  PubMed  Google Scholar 

  43. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84. https://doi.org/10.1016/j.neuron.2011.08.023. PubMed PMID: 22017994.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Neimat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mikell, C.B., Neimat, J.S. (2019). Microelectrode Recording-Based Targeting for Parkinson’s Disease Surgery. In: Goodman, R. (eds) Surgery for Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-23693-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23693-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23692-6

  • Online ISBN: 978-3-319-23693-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics