Skip to main content

Effect of Supernovae on the Local Interstellar Material

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alfaro EJ, Cabrera-Cano J, Delgado AJ (1991) Topography of the Galactic disk – Z-structure and large-scale star formation. ApJ 378:106. doi:10.1086/170410

    Article  ADS  Google Scholar 

  • Alfaro EJ, Elias F, Cabrera-Caño J (2009) Star-formation modes in the solar neighborhood. Ap&SS 324:141. doi:10.1007/s10509-009-0119-2

    Article  ADS  Google Scholar 

  • Altobelli N, Postberg F et al (2016) Flux and composition of interstellar dust at Saturn from Cassini’s cosmic dust analyzer. Science 352:312–318, eid 6283. doi:10.1126/science.aac6397

    Google Scholar 

  • Andersson GB, Lazarian A, Vaillancourt EJ (2015) Interstellar dust grain alignment. Ann Rev Astron Astrophys 53:501–539. doi:10.1146/annurev-astro-082214-122414

    Article  ADS  Google Scholar 

  • Basu S, Stuart MF, Schnabel C, Klemm V (2007) Galactic-cosmic-ray-produced He3 in a ferromanganese crust: any supernova Fe60 excess on earth? Phys Rev Lett 98(14):141103. doi:10.1103/PhysRevLett.98.141103

    Article  ADS  Google Scholar 

  • Barlow MJ, Silk J (1977) Absorption, heavy elements, interstellar matter, shock wave propagation, sputtering, supernova remnants, abundance, granular materials, propagation velocity, shock fronts. ApJ Lett 211:L83–L87. doi:10.1086/182346

    Article  ADS  Google Scholar 

  • Berdyugin A, Piirola V, Teerikorpi P (2014) Interstellar polarization at high galactic latitudes from distant stars. VIII. Patterns related to the local dust and gas shells from observations of ˜3600 stars. A&A 561:A24. doi:10.1051/0004-6361/201322604

    Google Scholar 

  • Berkhuijsen ME (1971) A survey of the continuum radiation at 820 MHz between declinations -7deg and +85deg. A study of the galactic radiation and the degree of polarization with special reference to the Loops and Spurs. A&A 14:359

    Google Scholar 

  • Berkhuijsen EM, Haslam CGT, Salter CJ (1971) Are the galactic loops supernova remnants? A&A 14:252–262

    ADS  Google Scholar 

  • Berkhuijsen ME (1973) Galactic continuum loops and the diameter-surface brightness relation for supernova remnants. A&A 24:143–147

    ADS  Google Scholar 

  • Bibring JP, Cesarsky CJ (1981) Interstellar grains as seeds for galactic cosmic rays. Int Cosm Ray Conf 2:289–291

    Google Scholar 

  • Binns RW, Wiedenbeck EM, Arnould M, Cummings CA, George SJ, Goriely S, Israel HM, Leske AR, Mewaldt AR, Meynet G, Scott LM, Stone CE, von Rosenvinge TT (2005) Cosmic-ray neon, Wolf-Rayet Stars, and the superbubble origin of galactic cosmic rays. ApJ 634:351–364. doi:10.1086/496959

    Article  ADS  Google Scholar 

  • Binns RW, Israel HM, Christian RE, Cummings CA, de Nolfo GA, Lave AK, Leske AR, Mewaldt AR, Stone CE, von Rosenvinge TT, Wiedenbeck EM (2016) Observation of the60Fe nucleosynthesis-clock isotope in galactic cosmic rays. Science 352:677–680. doi:10.1126/science.aad6004

    Article  ADS  Google Scholar 

  • Bishop S, Ludwig P, Egli R, Chernenko V, Frederichs T, Merchel S, Rugel G (2013) Search for supernova ˆ60Fe in the Earth’s fossil record. APS April Meeting Abstracts (2013)

    Google Scholar 

  • Blaauw A (1964) The O associations in the solar neighborhood. Ann Rev Astron Astrophys 2:213. doi:10.1146/annurev.aa.02.090164.001241

    Article  ADS  Google Scholar 

  • Bobylev VV (2014) The Gould Belt. Astrophysics 57:583–604. doi:10.1007/s10511-014-9360-7

    ADS  Google Scholar 

  • Bobylev VV, Bajkova AT (2014) The Gould Belt, the de Vaucouleurs-Dolidze belt, and the Orion arm. Astron Lett 40:783–792. doi:10.1134/S1063773714120020

    Article  ADS  Google Scholar 

  • Bowyer SC, Field BG, Mack FJ (1968) Detection of an anisotropic soft X-ray background flux. Nature 217:32

    Article  ADS  Google Scholar 

  • Brakenridge GR (1981) Terrestrial paleoenvironmental effects of a late quaternary-age supernova. Icarus 46:81–93

    Article  ADS  Google Scholar 

  • Breitschwerdt D, Feige J, Schulreich MM, Avillez MAD, Dettbarn C, Fuchs B (2016) The locations of recent supernovae near the Sun from modelling60Fe transport. Nature 532:73–76. doi:10.1038/nature17424

    Article  ADS  Google Scholar 

  • Bzowski M (1988) Local interstellar wind velocity from Doppler shifts of interstellar matter lines. Acta Astron 38:443–453

    ADS  Google Scholar 

  • Bzowski M, Sokół JM, Kubiak AM, Kucharek H (2013) Modulation of neutral interstellar He, Ne, O in the heliosphere. Survival probabilities and abundances at IBEX. A&A 557:A50. doi:10.1051/0004-6361/201321700

    Google Scholar 

  • Castor J, McCray R, Weaver R (1975) Interstellar bubbles. ApJ Lett 200:L107–L110. doi:10.1086/181908

    Article  ADS  Google Scholar 

  • Chu HY, Gruendl AR, Guerrero AM (2003a) An inside-out view of bubbles. In: Arthur J, Henney WJ (eds) Revista Mexicana de Astronomia y Astrofisica. Revista Mexicana de Astronomia y Astrofisica Conference Series, vols 27, 15. Universidad Nacional Autonoma de Mexico, Mexico City, pp 62–67

    Google Scholar 

  • Chu HY, Guerrero AM, Gruendl AR, García-Segura G, Wendker HJ (2003b) Hot gas in the circumstellar bubble S308. ApJ 599:1189–1195. doi:10.1086/379607

    Article  ADS  Google Scholar 

  • Clark DH, McCrea WH, Stephenson FR (1977) Frequency of nearby supernovae and climatic and biological catastrophes. Nature 265:318-+

    Google Scholar 

  • Cook LD, Berger E, Faestermann T, Herzog FG, Knie K, Korschinek G, Poutivtsev M, Rugel G, Serefiddin F (2009) 60Fe, 10Be, and 26Al in Lunar Cores 12025/8 and 60006/7: search for a nearby supernova. In: Lunar and planetary science conference. Lunar and Planetary Institute Technical Report, vol 40, p 1129

    Google Scholar 

  • Cox PD (2005) The three-phase interstellar medium revisited. Ann Rev Astron Astrophys 43:337–385. doi:10.1146/annurev.astro.43.072103.150615

    Article  ADS  Google Scholar 

  • Cox PD, Helenius L (2003) Flux-tube dynamics and model for the origin of the local fluff. ApJ 583:205–228

    Article  ADS  Google Scholar 

  • Cox PD, Reynolds JR (1987) The local interstellar medium. Ann Rev Astron Astrophys 25:303–344. doi:10.1146/annurev.aa.25.090187.001511

    Article  ADS  Google Scholar 

  • Cox PD, Smith WB (1974) Large-scale effects of supernova remnants on the galaxy: generation and maintenance of a hot network of tunnels. ApJ Lett 189:L105. doi:10.1086/181476

    Article  ADS  Google Scholar 

  • Cravens ET, Robertson PI, Snowden LS (2001) Temporal variations of geocoronal and heliospheric X-ray emission associated with the solar wind interaction with neutrals. J Geophys Res 106:24883–24892

    Article  ADS  Google Scholar 

  • Crawford AI (1991) High resolution observations of interstellar NA I and CA II towards the Scorpio-Centaurus Association. A&A 247:183–201

    ADS  Google Scholar 

  • Crutcher MR (1982) The local interstellar medium. ApJ 254:82–87

    Article  ADS  Google Scholar 

  • Cummings CA, Stone CE, Steenberg DC (2002) Composition of anomalous cosmic rays and other heliospheric ions. ApJ 578:194–210

    Article  ADS  Google Scholar 

  • Davies DR (1964) The galactic Spur. MNRAS 128:173. doi:10.1093/mnras/128.2.173

    Article  ADS  Google Scholar 

  • de Avillez MA, Breitschwerdt D (2012) Non-equilibrium ionization modeling of the Local Bubble. I. Tracing Civ, Nv, and Ovi ions. A&A 539:L1. doi:10.1051/0004-6361/201117172

    Google Scholar 

  • de Geus EJ (1991) Interaction of massive stars with the interstellar medium. In: Janes K (eds) The formation and evolution of star clusters. Astronomical Society of the Pacific conference series, vol 13. Astronomical Society of the Pacific, San Francisco, pp 40–54

    Google Scholar 

  • de Geus EJ (1992) Interactions of stars and interstellar matter in Scorpio Centaurus. A&A 262:258

    ADS  Google Scholar 

  • Diehl R, Lang MG, Martin P, Ohlendorf H, Preibisch T, Voss R, Jean P, Roques JP, von Ballmoos P, Wang W (2010) Radioactive26Al from the scorpius-centaurus association. A&A 522:A51. doi:10.1051/0004-6361/201014302

    Article  ADS  Google Scholar 

  • Draine BT, Salpeter EE (1979) Destruction mechanisms for interstellar dust. ApJ 231:438–455

    Article  ADS  Google Scholar 

  • Dwarkadas VV (2005) The evolution of supernovae in circumstellar wind-blown bubbles. I. Introduction and one-dimensional calculations. ApJ 630:892–910. doi:10.1086/432109

    Google Scholar 

  • Dwarkadas VV (2007) The evolution of supernovae in circumstellar wind bubbles. II. Case of a Wolf-Rayet Star. ApJ 667:226–247. doi:10.1086/520670

    Google Scholar 

  • Dwarkadas VV, Rosenberg LD (2013) Simulated X-ray spectra from ionized wind-blown nebulae around massive stars. High Energy Density Phys 9:226–230. doi:10.1016/j.hedp.2012.12.003

    Article  ADS  Google Scholar 

  • Dwarkadas VV, Rosenberg D (2015) X-ray emission from ionized wind-bubbles around Wolf-Rayet Stars. In: Hamann W-R, Sander A, Todt H (eds) Wolf-Rayet Stars: proceedings of an international workshop held in Potsdam, 1–5 June 2015. Universitätsverlag Potsdam, pp 329–332

    Google Scholar 

  • Ebel SD (2000) Variations on solar condensation: Sources of interstellar dust nuclei. J Geophys Res 105:10363–10370

    Article  ADS  Google Scholar 

  • Egger JR, Aschenbach B (1995) Interaction of the Loop I supershell with the local hot bubble. A&A 294:L25–L28

    ADS  Google Scholar 

  • Elias F, Alfaro EJ, Cabrera-Caño J (2009) Hierarchical star formation: stars and stellar clusters in the Gould Belt. MNRAS 397:2–13. doi:10.1111/j.1365-2966.2009.14465.x

    Article  ADS  Google Scholar 

  • Ellison DC, Drury LO, Meyer J (1997) Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. ApJ 487:197

    Google Scholar 

  • Epstein RI (1980) The acceleration of interstellar grains and the composition of the cosmic rays. MNRAS 193:723–729. doi:10.1093/mnras/193.4.723

    Article  ADS  Google Scholar 

  • Ferriere MK, Mac Low M, Zweibel GE (1991) Expansion of a superbubble in a uniform magnetic field. ApJ 375:239–253

    Article  ADS  Google Scholar 

  • Fields DB, Hochmuth AK, Ellis J (2005) Deep-ocean crusts as telescopes: using live radioisotopes to probe supernova nucleosynthesis. ApJ 621:902–927

    Article  ADS  Google Scholar 

  • Fields BD, Athanassiadou T, Johnson SR (2008) Supernova collisions with the heliosphere. ApJ 678:549–562. doi:10.1086/523622

    Article  ADS  Google Scholar 

  • Fimiani L, Cook LD, Faestermann T, Gomez Guzman JM, Hain K, Herzog FG, Korschinek G, Ligon B, Ludwig P, Park J, Reedy RC, Rugel G (2012) Sources of live ˆ6ˆ0Fe, ˆ1ˆ0Be, and ˆ2ˆ6Al in Lunar Core 12025, Core 15008, Skim Sample 69921, Scoop Sample 69941, and Under-Boulder Sample 69961. In: Lunar and planetary science conference. Lunar and Planetary Institute Technical Report, vol 43, p 1279

    Google Scholar 

  • Fimiani L, Cook LD, Faestermann T, Gómez-Guzmán JM, Hain K, Herzog G, Knie K, Korschinek G, Ludwig P, Park J, Reedy CR, Rugel G (2016) Interstellar Fe 60 on the surface of the Moon. Phys Rev Lett 116(15):151104. doi:10.1103/PhysRevLett.116.151104

    Article  ADS  Google Scholar 

  • Fisk LA, Kozlovsky B, Ramaty R (1974) An interpretation of the observed oxygen and nitrogen enhancements in low energy cosmic rays. ApJ 190:L35–L38

    Article  ADS  Google Scholar 

  • Fitoussi C, Raisbeck MG, Knie K, Korschinek G, Faestermann T, Goriely S, Lunney D, Poutivtsev M, Rugel G, Waelbroeck C, Wallner A (2008) Search for supernova-produced Fe60 in a marine sediment. Phys Rev Lett 101(12):121101. doi:10.1103/PhysRevLett.101.121101

    Article  ADS  Google Scholar 

  • Florinski V, Zank GP (2006) The galactic cosmic ray intensity in the heliosphere in response to variable interstellar environments. In: Frisch PC (ed) Solar journey: the significance of our galactic environment for the heliosphere and earth. Springer, Dordrecht, pp 281–316

    Chapter  Google Scholar 

  • Freyer T, Hensler G, Yorke WH (2003) Massive stars and the energy balance of the interstellar medium. I. The impact of an isolated 60 M solar Star. ApJ 594:888–910. doi:10.1086/376937

    Article  ADS  Google Scholar 

  • Freyer T, Hensler G, Yorke WH (2006) Massive stars and the energy balance of the interstellar medium. II. The 35 M solar Star and a Solution to the “Missing Wind Problem”. ApJ 638:262–280. doi:10.1086/498734

    Article  ADS  Google Scholar 

  • Frisch PC (1979) The interstellar material in front of Chi Ophiuchi. I – optical observations. ApJ 227:474–482

    Google Scholar 

  • Frisch PC (1981) The nearby interstellar medium. Nature 293:377–379. doi:10.1038/293377a0

    Article  ADS  Google Scholar 

  • Frisch PC (1993) Whence Geminga. Nature 364:395

    Article  ADS  Google Scholar 

  • Frisch PC (1993) ApJ G-star astropauses – a test for interstellar pressure. 407:198–206

    Google Scholar 

  • Frisch PC (1995) Characteristics of nearby interstellar matter. Space Sci Rev 72:499–592

    Article  ADS  Google Scholar 

  • Frisch PC (2003) Local interstellar matter: the apex cloud. ApJ 593:868–873

    Article  ADS  Google Scholar 

  • Frisch PC (2006) Solar journey: the significance of our galactic environment for the heliosphere and earth. Springer, Dordrecht

    Book  Google Scholar 

  • Frisch PC (2010) The S1 shell and interstellar magnetic field and gas near the heliosphere. ApJ 714:1679–1688. doi:10.1088/0004-637X/714/2/1679

    Article  ADS  Google Scholar 

  • Frisch PC, Andersson BG, Berdyugin A, Piirola V, Funsten HO, Magalhaes AM, Seriacopi DB, McComas DJ, Schwadron NA, Slavin JD, Wiktorowicz SJ (2015) Evidence for an interstellar dust filament in the outer heliosheath. ApJ 805:60. doi:10.1088/0004-637X/805/1/60

    Article  ADS  Google Scholar 

  • Frisch PC, Berdyugin A, Piirola V, Magalhaes AM, Seriacopi D, Ferrari T, Santos FP, Schwadron N, Funsten HO, McComas DJ, Heiles C (2016, in press) Tracing the structure of the interstellar magnetic field around the heliosphere using polarized starlight. AGU Fall Meet Abstr SHA312544

    Google Scholar 

  • Frisch PC, Bzowski M, Grün E, Izmodenov V, Krüger H, Linsky JL, McComas DJ, Möbius E, Redfield S, Schwadron N, Shelton RR, Slavin JD, Wood BE (2009) The galactic environment of the Sun: interstellar material inside and outside of the heliosphere. Space Sci Rev 146:235–273

    Article  ADS  Google Scholar 

  • Frisch PC, Dorschner MJ, Geiss J, Greenberg MJ, Grün E, Landgraf M, Hoppe P, Jones PA, Krätschmer W, Linde JT, Morfill EG, Reach W, Slavin DJ, Svestka J, Witt NA, Zank GP (1999) Dust in the local interstellar wind. ApJ 525:492–516

    Article  ADS  Google Scholar 

  • Frisch PC, Grodnicki L, Welty ED (2002) The velocity distribution of the nearest interstellar gas. ApJ 574:834–846

    Article  ADS  Google Scholar 

  • Frisch PC, Mueller HR (2011) Time-variability in the interstellar boundary conditions of the heliosphere: effect of the solar journey on the galactic cosmic ray flux at earth. Space Sci Rev pp 130–+. doi:10.1007/s11214-011-9776-x

    Google Scholar 

  • Frisch PC, Redfield S, Slavin J (2011) The interstellar medium surrounding the Sun. Ann Rev Astron Astrophys 49:237–279

    Article  ADS  Google Scholar 

  • Frisch PC, Schwadron AN (2014) Large-scale Interstellar Structure and the Heliosphere. In: Hu Q, Zank GP (eds) Outstanding problems in heliophysics: from coronal heating to the edge of the heliosphere. Astron Soc Pac Conf Ser 484:42

    Google Scholar 

  • Frisch P, York GD (1986) Interstellar clouds near the Sun. In: Smoluchowski R, Bahcall J, Matthews M (eds) The galaxy and the solar system. University of Arizona Press, Tucson, pp 83–100

    Google Scholar 

  • Fry JB, Fields DB, Ellis RJ (2016) Radioactive Iron Rain: Transporting60Fe in Supernova Dust to the Ocean Floor. ApJ 827:48. doi:10.3847/0004-637X/827/1/48

    Article  ADS  Google Scholar 

  • Fuchs B, Breitschwerdt D, de Avillez MA, Dettbarn C, Flynn C (2006) The search for the origin of the local bubble redivivus. MNRAS 373:993–1003. doi:10.1111/j.1365-2966.2006.11044.x

    Article  ADS  Google Scholar 

  • Funsten HO, DeMajistre R, Frisch PC, Heerikhuijsen J, Higdon DM, Janzen P, Larsen B, Livadiotis G, McComas DJ, Möbius E, Reese C, Reisenfeld DB, Schwadron NA, Zirnstein EJ (2013) Circularity of the IBEX ribbon of enhanced energetic neutral atom (ENA) fluxes. ApJ 776:30

    Article  ADS  Google Scholar 

  • Garcia-Segura G, Mac Low MM, Langer N (1996) The dynamical evolution of circumstellar gas around massive stars. I. The impact of the time sequence Ostar - > LBV - > WR star. A&A 305:229

    Google Scholar 

  • Garcia-Segura G, Langer N, Mac Low MM (1996) The hydrodynamic evolution of circumstellar gas around massive stars. II. The impact of the time sequence O star - > RSG - > WR star. A&A 316:133–146

    ADS  Google Scholar 

  • Gehrels N, Laird MC, Jackman HC, Cannizzo KJ, Mattson JB, Chen W (2003) Ozone depletion from nearby supernovae. ApJ 585:1169–1176

    Article  ADS  Google Scholar 

  • Grenier IA (2004) The Gould Belt, star formation, and the local interstellar medium. ArXiv Astrophys e-prints. arXiv:astro-ph/0409096

    Google Scholar 

  • Gry C, Nehmé C, Boulanger F, Lebourlot J, Des Forêts GP, Falgarone E (2009) Supernova impact on a molecular cloud in the local bubble. In: Smith KR, Snowden LS, Kuntz KD (eds) American institute of physics conference series, vol 1156, pp 218–222. doi:10.1063/1.3211817

    Google Scholar 

  • Gry C, Jenkins BE (2014) The interstellar cloud surrounding the Sun: a new perspective. A&A 567:A58. doi:10.1051/0004-6361/201323342

    Article  ADS  Google Scholar 

  • Gloeckler G, Fisk L (2007) Johannes Geiss’ investigations of solar, heliospheric and interstellar matter. Space Sci Rev 27:489–513

    Article  ADS  Google Scholar 

  • Hanayama H, Tomisaka K (2006) Long-term evolution of supernova remnants in magnetized interstellar medium. ApJ 641:905–918. doi:10.1086/500527

    Article  ADS  Google Scholar 

  • Hanbury Brown R, Davies DR, Hazard C (1960) A curious feature of the radio sky. Obs 80:191–198

    ADS  Google Scholar 

  • Heerikhuisen J, Pogorelov NV, Zank GP, Crew GB, Frisch PC, Funsten HO, Janzen PH, McComas DJ, Reisenfeld DB, Schwadron NA (2010) Pick-up ions in the outer heliosheath: a possible mechanism for the interstellar boundary eXplorer ribbon. ApJ Lett 708:L126–L130

    Article  ADS  Google Scholar 

  • Herbig HG (1968) The interstellar line spectrum of zeta Oph. Zeitschrift Astrophysics 68:243–277

    ADS  Google Scholar 

  • Heiles C (1979) H I shells and supershells. ApJ 229:533–537

    Article  ADS  Google Scholar 

  • Heiles C, Chu Y, Troland HT, Reynolds JR, Yegingil I (1980) A new look at the North Polar Spur. ApJ 242:533–540

    Article  ADS  Google Scholar 

  • Heiles C (1984) H I shells, supershells, shell-like objects, and ’worms’. ApJS 55:585–595

    Article  ADS  Google Scholar 

  • Heiles C (1989) Magnetic fields, pressures, and thermally unstable gas in prominent H I shells. ApJ 336:808–821

    Article  ADS  Google Scholar 

  • Heiles C, Reach TW, Koo CB (1996) Radio recombination lines from inner galaxy diffuse gas. II. The extended low-density warm ionized medium and the “Worm-ionized Medium”. ApJ 466:191

    Google Scholar 

  • Heiles C (1998) Whence the Local Bubble, Gum, Orion? GSH 238+00+09, a nearby major superbubble toward galactic longitude 238 degrees. ApJ 498:689–703

    Article  ADS  Google Scholar 

  • Heiles C, Haffner ML, Reynolds JR (1999) The Eridanus superbubble in its multiwavelength glory. In: Taylor RA, Landecker LT, Joncas G (eds) New perspectives on the interstellar medium. Astronomical Society of the Pacific conference series, vol 168. Astronomical Society of the Pacific, San Francisco, p 211

    Google Scholar 

  • Holzer TE (1989) Interaction between the solar wind and the interstellar medium. Ann Rev Astron Astrophys 27: 199–234

    Article  ADS  Google Scholar 

  • Hoyle F, Lyttleton RA (1939) The effect of interstellar matter on climatic variation. Proc Camb Philol Soc 35:405. doi:10.1017/S0305004100021150

    Article  ADS  Google Scholar 

  • Iwan DC (1980) X-ray observations of the North Polar Spur. ApJ 239:316–327

    Article  ADS  Google Scholar 

  • Jenkins BE (2009) A unified representation of gas-phase element depletions in the interstellar medium. ApJ 700:1299–1348

    Article  ADS  Google Scholar 

  • Jones AP, Tielens AGGM, Hollenbach DJ, McKee CF (1994) Grain destruction in shocks in the interstellar medium. ApJ 433:797–810

    Article  ADS  Google Scholar 

  • Jones AP, Tielens A, Hollenbach DJ (1996) Grain shattering in shocks: the interstellar grain size distribution. ApJ 469:740–764

    Article  ADS  Google Scholar 

  • Kimura H, Mann I, Jessberger KE (2003) Elemental abundances and mass densities of dust and gas in the local interstellar cloud. ApJ 582:846–856

    Article  ADS  Google Scholar 

  • Knie K, Korschinek G, Faestermann T, Wallner C, Scholten J, Hillebrandt W (1999) Indication for supernova produced60Fe activity on Earth. Phys Rev Lett 83:18–21. doi:10.1103/PhysRevLett.83.18

    Article  ADS  Google Scholar 

  • Knie K, Korschinek G, Faestermann T, Dorfi AE, Rugel G, Wallner A (2004)60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Phys Rev Lett 93(17):171103. doi:10.1103/PhysRevLett.93.171103

    Google Scholar 

  • Knödlseder J (1999) Gamma rays: observations, nuclear reactions, nucleosynthesis, abundances, stars: wolf-rayet, stars: supernovae: general. ApJ 510:915–929. doi:10.1086/306601

    Article  ADS  Google Scholar 

  • Knödlseder J, Bennett K, Bloemen H, Diehl R, Hermsen W, Oberlack U, Ryan J, Schönfelder V, von Ballmoos P (1999) A multiwavelength comparison of COMPTEL 1.8 MeV {(26) } line data. A&A 344:68–82

    ADS  Google Scholar 

  • Koo CB, McKee FC (1992a) Dynamics of wind bubbles and superbubbles. I – slow winds and fast winds. II – analytic theory. ApJ 388:93–126. doi:10.1086/171132

    Google Scholar 

  • Koo CB, McKee FC (1992b) Dynamics of Wind Bubbles and Superbubbles. II. Analytic Theory. ApJ 388:103. doi:10.1086/171133

    Google Scholar 

  • Korpi JM, Brandenburg A, Shukurov A, Tuominen I (1999) Evolution of a superbubble in a turbulent, multi-phased and magnetized ISM. A&A 350:230–239

    ADS  Google Scholar 

  • Koutroumpa D, Lallement R, Raymond CJ, Kharchenko V (2009) The solar wind charge-transfer X-ray emission in the 1/4 keV energy range: inferences on local bubble hot gas at low Z. ApJ 696:1517–1525. doi:10.1088/0004-637X/696/2/1517

    Article  ADS  Google Scholar 

  • Krause MGH, Diehl R, Bagetakos Y, Brinks E, Burkert A, Gerhard O, Greiner J, Kretschmer K, Siegert T (2015)26Al kinematics: superbubbles following the spiral arms? Constraints from the statistics of star clusters and HI supershells. A&A 578:A113. doi:10.1051/0004-6361/201525847

    Google Scholar 

  • Kubiak AM, Swaczyna P, Bzowski M, Sokół JM, Fuselier SA, Galli A, Heirtzler D, Kucharek H, Leonard WT, McComas DJ, Möbius E, Park J, Schwadron AN, Wurz P (2016) Interstellar neutral helium in the heliosphere from IBEX observations. IV. Flow vector, Mach number, and abundance of the warm breeze. ApJS 223:25. doi:10.3847/0067-0049/223/2/25

    Google Scholar 

  • Kun M (2007) The enigmatic loop III and the local galactic structure. In: Elmegreen GB, Palous J (eds) Triggered star formation in a turbulent ISM. IAU symposium, vol 237, pp 119–123. doi:10.1017/S1743921307001329

    Google Scholar 

  • Kuntz DK, Collado-Vega YM, Collier RM, Connor KH, Cravens TE, Koutroumpa D, Porter SF, Robertson PI, Sibeck GD, Snowden LS, Thomas EN, Walsh MB (2015) The solar wind charge-exchange production factor for hydrogen. ApJ 808:143. doi:10.1088/0004-637X/808/2/143

    Article  ADS  Google Scholar 

  • Lallement R, Snowden S, Kuntz DK, Dame MT, Koutroumpa D, Grenier I, Casandjian MJ (2016) On the distance to the North Polar Spur and the local CO-H2 factor. Astron Astrophys 595:A131. ArXiv e-prints

    Google Scholar 

  • Lallement R, Vidal-Madjar A, Ferlet R (1986) Multi-component velocity structure of the local interstellar medium. Astron Astrophys 168:225–236

    ADS  Google Scholar 

  • Leske AR (2000) Anomalous cosmic ray composition from ACE. In: Dingus BL, Kieda BD, Salamon MH (eds) 26th International Cosmic Ray Conference, ICRC XXVI. American Institute of Physics Conference Series, vol 516, pp 274–282. doi:10.1063/1.1291481

    Google Scholar 

  • Limongi M, Chieffi A (2003) Evolution, explosion, and nucleosynthesis of core-collapse supernovae. ApJ 592:404–433. doi:10.1086/375703

    Article  ADS  Google Scholar 

  • Ludwig P, Bishop S, Eglib R, Chernenkoa Vea (2016) Time-resolved 2-million-year-old supernova activity discovered in Earth’s microfossil record. PNAS 113:9232–9237. doi:10.1073/pnas.1601040113

    Article  ADS  Google Scholar 

  • Maíz-Apellániz J (2001) The origin of the local bubble. ApJ Lett 560:L83

    Article  ADS  Google Scholar 

  • Mac Low MM, McCray R (1988) Superbubbles in disk galaxies. ApJ 324:776–785. doi:10.1086/165936

    Article  ADS  Google Scholar 

  • Mac Low MM, McCray R, Norman LM (1989) Superbubble blowout dynamics. ApJ 337:141–154. doi:10.1086/167094

    Article  ADS  Google Scholar 

  • Mac Low MM (1999) The interaction of the disk with the Halo. In: Taylor RA, Landecker LT, Joncas G (eds) New perspectives on the interstellar medium. Astronomical Society of the Pacific conference series, vol 168. Astronomical Society of the Pacific, San Francisco, p 303

    Google Scholar 

  • McCammon D, Burrows ND, Sanders TW, Kraushaar LW (1983) The Soft X-ray Diffuse Background. ApJ 269:107–135

    Article  ADS  Google Scholar 

  • McCammon D, Sanders TW (1990) The soft X-ray background and its origins. Ann Rev Astron Astrophys 28:657–688. doi:10.1146/annurev.aa.28.090190.003301

    Article  ADS  Google Scholar 

  • McComas DJ, Allegrini F, Bochsler P, Bzowski M, Christian ER, Crew GB, DeMajistre R, Fahr H, Fichtner H, Frisch PC, Funsten HO, Fuselier SA, Gloeckler G, Gruntman M, Heerikhuisen J, Izmodenov V, Janzen P, Knappenberger P, Krimigis S, Kucharek H, Lee M, Livadiotis G, Livi S, MacDowall RJ, Mitchell D, Möbius E, Moore T, Pogorelov NV,Reisenfeld D, Roelof E, Saul L, Schwadron NA, Valek PW,Vanderspek R, Wurz P, Zank GP (2009) Comparison of interstellar boundary explorer observations with 3D global heliospheric models. Science 326:959

    Article  ADS  Google Scholar 

  • McComas JD, Lewis SW, Schwadron AN (2014) IBEXs Enigmatic Ribbon in the sky and its many possible sources. Rev Geophys 52:118–155. doi:10.1002/2013RG000438

    Article  ADS  Google Scholar 

  • McComas JD, Bzowski M, Frisch P, Fuselier AS, Kubiak AM, Kucharek H, Leonard T, Möbius E, Schwadron AN, Sokół JM, Swaczyna P, Witte M (2015a) Warmer local interstellar medium: a possible resolution of the Ulysses-IBEX Enigma. ApJ 801:28. doi:10.1088/0004-637X/801/1/28

    Article  ADS  Google Scholar 

  • McComas JD, Bzowski M, Fuselier AS, Frisch CP, Galli A, Izmodenov VV, Katushkina AO, Kubiak AM, Lee AM, Leonard WT, Möbius E, Park J, Schwadron AN, Sokół JM, Swaczyna P, Wood EB, Wurz P (2015b) Local interstellar medium: six years of direct sampling by IBEX. ApJS 220:22. doi:10.1088/0067-0049/220/2/22

    Article  ADS  Google Scholar 

  • McKee FC, van Buren D, Lazareff B (1984) Photoionized stellar wind bubbles in a cloudy medium. ApJ Lett 278:L115–L118. doi:10.1086/184237

    Article  ADS  Google Scholar 

  • Meyer DM, Lauroesch JT, Peek JEG, Heiles C (2012) The remarkable high pressure of the local leo cold cloud. ApJ 752:119. doi:10.1088/0004-637X/752/2/119

    Article  ADS  Google Scholar 

  • Möbius E, Bochsler P, Bzowski M, Crew BG, Funsten OH, Fuselier SA, Ghielmetti A, Heirtzler D, Izmodenov VV, Kubiak M, Kucharek H, Lee AM, Leonard T, McComas JD, Petersen L, Saul L, Scheer AJ, Schwadron N, Witte M, Wurz P (2009) Direct observations of interstellar H, He, and O by the interstellar boundary explorer. Science 326:969-. doi:10.1126/science.1180971

    Google Scholar 

  • Müller HR, Frisch PC, Florinski V, Zank GP (2006) Heliospheric response to different possible interstellar environments. ApJ 647:1491–1505

    Article  ADS  Google Scholar 

  • Müller HR, Frisch PC, Fields BD, Zank GP (2009) The heliosphere in time. Space Sci Rev 143:415–425

    Article  ADS  Google Scholar 

  • Murphy RP, Sasaki M, Binns WR, Brandt TJ, Hams T, Israel MH, Labrador AW, Link JT, Mewaldt RA, Mitchell JW, Rauch BF, Sakai K, Stone EC, Waddington CJ, Walsh NE, Ward JE, Wiedenbeck ME (2016) Galactic cosmic ray origins and OB associations: evidence from SuperTIGER observations of elements _26Fe through _40Zr. ArXiv e-prints

    Google Scholar 

  • Nehmé C, Gry C, Boulanger F, Le Bourlot J, Pineau Des Forêts G, Falgarone E (2008) Multi-wavelength observations of a nearby multi-phase interstellar cloud. A&A 483:471–484. doi:10.1051/0004-6361:20078373

    Article  ADS  Google Scholar 

  • Neronov A, Meynet G (2016) Abundances of59Co and59Ni in the cosmic ray flux. A&A 588:A86. doi:10.1051/0004-6361/201527762

    Article  ADS  Google Scholar 

  • Ochsendorf BB, Brown AGA, Bally J, Tielens AGMG (2015) Nested shells reveal the rejuvenation of the Orion-Eridanus Superbubble. ApJ 808:111. doi:10.1088/0004-637X/808/2/111

    Article  ADS  Google Scholar 

  • Oey SM, García-Segura G (2004) Ambient interstellar pressure and superbubble evolution. ApJ 613:302–311. doi:10.1086/421483

    Article  ADS  Google Scholar 

  • Park J, Kucharek H, Möbius E (2014) The Ne-to-O abundance ratio of the interstellar medium from IBEX-Lo observations. ApJ 795:97

    Article  ADS  Google Scholar 

  • Park J, Kucharek H, Möbius E, Galli A, Livadiotis G, Fuselier SA, McComas JD (2015) Statistical analysis of the heavy neutral atoms measured by IBEX. ApJS 220:34. doi:10.1088/0067-0049/220/2/34

    Article  ADS  Google Scholar 

  • Peek JEG, Heiles C, Peek KMG, Meyer DM, Lauroesch JT (2011) The local leo cold cloud and new limits on a local hot bubble. ApJ 735:129. doi:10.1088/0004-637X/735/2/129

    Article  ADS  Google Scholar 

  • Pellizza JL, Mignani PR, Grenier AI, Mirabel IF (2005) On the local birth place of Geminga. A&A 435:625–630

    Article  ADS  Google Scholar 

  • Perrot CA, Grenier IA (2003) 3D dynamical evolution of the interstellar gas in the Gould Belt. A&A 404:519–531. doi:10.1051/0004-6361:20030477

    Article  ADS  Google Scholar 

  • Pogorelov NV, Suess ST, Borovikov SN, Ebert RW, McComas DJ, Zank GP (2013) Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. IV. solar cycle model based on Ulysses observations.ApJ 772:2. doi:10.1088/0004-637X/772/1/2

    Google Scholar 

  • Pon A, Ochsendorf BB, Alves J, Bally J, Basu S, Tielens AGGM (2016) Kompaneets model fitting of the Orion-Eridanus Superbubble. II. thinking outside of barnards loop. ApJ 827:42. doi:10.3847/0004-637X/827/1/42

    Google Scholar 

  • Rauch BF, Link JT, Lodders K, Israel MH, Barbier LM, Binns WR, Christian ER, Cummings JR, de Nolfo GA, Geier S, Mewaldt RA, Mitchell JW, Schindler SM, Scott LM, Stone EC, Streitmatter RE, Waddington CJ, Wiedenbeck ME (2009) Cosmic ray origin in OB associations and preferential acceleration of refractory elements: evidence from abundances of elements26Fe through34Se. ApJ 697:2083–2088. doi:10.1088/0004-637X/697/2/2083

    Article  ADS  Google Scholar 

  • Redfield S, Linsky JL (2004) Structure of local interstellar medium. III. Temperature and turbulence. ApJ 613:1004–1022

    Google Scholar 

  • Redfield S, Linsky LJ (2008) The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. ApJ 673:283–314

    Article  ADS  Google Scholar 

  • Reynolds JR (1984) Optical emission line studies and the warm, ionized component of the local interstellar medium. In: Kondo Y, Bruhweiler CF, Savage BD (eds) NASA conference publication, vol 2345. NASA, Goddard

    Google Scholar 

  • Rogerson JB, York DG, Drake JF, Jenkins EB, Morton DC, Spitzer L (1973) Spectrophotometric results from the copernicus satellite. III. Ionization and composition of the intercloud medium. ApJ Lett 181:L110. doi:10.1086/181196

    Google Scholar 

  • Routly P, Spitzer JL (1952) A comparison of the components in interstellar sodium and calcium. ApJ 115:227

    Article  ADS  Google Scholar 

  • Rozyczka M, Tenorio-Tagle G, Franco J, Bodenheimer P (1993) On the evolution of supernova remnants. III - Off-centred supernova explosions in pre-existing wind-driven bubbles. MNRAS 261:674–680. doi:10.1093/mnras/261.3.674

    Google Scholar 

  • Rugel G, Faestermann T, Knie K, Korschinek G, Poutivtsev M, Schumann D, Kivel N, Günther-Leopold I, Weinreich R, Wohlmuther M (2009) New measurement of the Fe60 half-life. Phys Rev Lett 103(7):072502. doi:10.1103/PhysRevLett.103.072502

    Article  ADS  Google Scholar 

  • Salter JC (1983) Loop-I the North Polar Spur – a major feature of the local interstellar environment. Bull Astron Soc India 11:1

    ADS  Google Scholar 

  • Salvati M (2010) The local Galactic magnetic field in the direction of Geminga. A&A 513:A28+

    Google Scholar 

  • Sanders TW, Kraushaar LW, Nousek AJ, Fried MP (1977) Soft diffuse X-rays in the southern galactic hemisphere. ApJ Lett 217:L87–L91. doi:10.1086/182545

    Article  ADS  Google Scholar 

  • Santos PF, Corradi W, Reis W (2011) Optical polarization mapping toward the interface between the local cavity and Loop I. ApJ 728:104

    Article  ADS  Google Scholar 

  • Scherer K, Fichtner H, Borrmann T, Beer J, Desorgher L, Flükiger E, Fahr HJ, Ferreira SES, Langner UW, Potgieter MS, Heber B, Masarik J, Shaviv N, Veizer J (2006) Interstellar-terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate. Space Sci Rev 127:327–465. doi:10.1007/s11214-006-9126-6

    Article  ADS  Google Scholar 

  • Schwadron AN, Adams CF, Christian RE, Desiati P, Frisch P, Funsten OH, Jokipii RJ, McComas JD, Moebius E, Zank PG (2014) Global anisotropies in TeV cosmic rays related to the Suns local galactic environment from IBEX. Science 343:988–990. doi:10.1126/science.1245026

    Article  ADS  Google Scholar 

  • Schwadron NA, Allegrini F, Bzowski M, Christian ER, Crew GB, Dayeh M, DeMajistre R, FrischP, Funsten HO, Fuselier SA, Goodrich K, Gruntman M, Janzen P, Kucharek H, LivadiotisG, McComas DJ, Moebius E, Prested C, Reisenfeld D, Reno M, Roelof E, Siegel J, Vanderspek R (2011) Separation of the interstellar boundary explorer ribbon from globally distributed energetic neutral atom flux. ApJ 731:56–77. doi:10.1088/0004-637X/731/1/56

    Article  ADS  Google Scholar 

  • Schwadron NA, Bzowski M, Crew GB, Gruntman M, Fahr H, Fichtner H, Frisch PC, Funsten HO, Fuselier S, Heerikhuisen J, Izmodenov V, Kucharek H, Lee M, Livadiotis G, McComas DJ, Moebius E, Moore T, Mukherjee J, Pogorelov NV, Prested C, Reisenfeld D, Roelof E, Zank GP (2009) Comparison of interstellar boundary explorer observations with 3D global heliospheric models. Science 326:966-

    Google Scholar 

  • Schwadron AN, McComas JD (2013) Spatial retention of ions producing the IBEX ribbon. ApJ 764:92. doi:10.1088/0004-637X/764/1/92

    Article  ADS  Google Scholar 

  • Schwadron AN, Moebius E, Kucharek H, Lee AM, French J, Saul L, Wurz P, Bzowski M, Fuselier AS, Livadiotis G, McComas DJ, Frisch P, Gruntman M, Mueller RH (2013) Determination of interstellar He parameters using five years of data from the interstellar boundary explorer: beyond closed form approximations. ApJ 775:86. doi:10.1088/0004-637X/775/2/86

    Article  ADS  Google Scholar 

  • Schwadron AN, Moebius E, Leonard T, Fuselier AS, McComas JD, Heirtzler D, Kucharek H, Rahmanifard F, Bzowski M, Kubiak AM, Sokol J, Swaczyna P, Frisch P (2015) Determination of interstellar He parameters using five years of data from the interstellar boundary explorer: beyond closed form approximations. ApJS 220:25. doi:10.1088/0067-0049/220/2/25

    Article  ADS  Google Scholar 

  • Schwadron AN, Möbius E, McComas JD, Bochsler P, Bzowski M, Fuselier AS, Livadiotis G, Frisch P, Müller HR, Heirtzler D, Kucharek H, Lee A (2016) Determination of interstellar oxygen parameters using the first two years of data from the interstellar boundary explorer. ApJ 828:81. doi:10.3847/0004-637X/828/2/81

    Article  ADS  Google Scholar 

  • Sembach RK, Danks CA (1994) Optical studies of interstellar material in low density regions of the Galaxy. A&A 289:539–558

    ADS  Google Scholar 

  • Shapley H (1921) Note on a possible factor in changes of geological climate. J Geology 29:502–504

    Article  ADS  Google Scholar 

  • Shull MJ (1993) Hot phases or the interstellar medium, stellar winds, supernovae, and turbulent mixing layers. In: Cassinelli PJ, Churchwell EB (eds) Massive stars: their lives in the interstellar medium. Astronomical Society of the Pacific conference series, vol 35. Astronomical Society of the Pacific, San Francisco, p 327

    Google Scholar 

  • Siluk SR, Silk J (1974) On the velocity dependence of the interstellar Na I/Ca II ratio. ApJ 192:51–57

    Article  ADS  Google Scholar 

  • Slavin JD (1989) Consequences of a conductive boundary on the local cloud. I – No Dust. ApJ 346:718-727

    Google Scholar 

  • Slavin JD, Dwek E, Jones PA (2015) Destruction of interstellar dust in evolving supernova remnant shock waves. ApJ 803:7. doi:10.1088/0004-637X/803/1/7

    Article  ADS  Google Scholar 

  • Slavin JD, Frisch PC (1996) Relative ionizations in the nearest interstellar gas. Space Sci Rev 78:223–228

    Article  ADS  Google Scholar 

  • Slavin JD, Frisch C (2002) The ionization of nearby interstellar gas. ApJ 565:364–379

    Article  ADS  Google Scholar 

  • Slavin JD, Frisch PC (2008) The boundary conditions of the heliosphere: photoionization models constrained by interstellar and in situ data. A&A 491:53–68

    Article  ADS  Google Scholar 

  • Smith KR, Cox PD (2001) Multiple supernova remnant models of the local bubble and the soft X-ray background. ApJS 134:283–309. doi:10.1086/320850

    Article  ADS  Google Scholar 

  • Smith VV, Cunha K, Plez B (1994) Is Geminga a runaway member of the Orion association?. A&A 281:L41–L44

    ADS  Google Scholar 

  • Smith KR, Foster RA, Edgar JR, Brickhouse SN (2014) Resolving the origin of the diffuse soft X-ray background. ApJ 787:77. doi:10.1088/0004-637X/787/1/77

    Article  ADS  Google Scholar 

  • Snowden LS, Heiles C, Koutroumpa D, Kuntz DK, Lallement R, McCammon D, Peek JGE (2015) Revisiting the local leo cold cloud and revised constraints on the local hot bubble. ApJ 806:119. doi:10.1088/0004-637X/806/1/119

    Article  ADS  Google Scholar 

  • Snowden LS, Koutroumpa D, Kuntz DK, Lallement R, Puspitarini L (2015) The north galactic pole rift and the local hot bubble. ApJ 806:120. doi:10.1088/0004-637X/806/1/120

    Article  ADS  Google Scholar 

  • Sofue Y (2015) The North Polar Spur and Aquila Rift. MNRAS 447:3824–3831. doi:10.1093/mnras/stu2661

    Article  ADS  Google Scholar 

  • Spitzer L (1976) High-velocity interstellar clouds. Comments Astrophys 6:177–187

    ADS  Google Scholar 

  • Spoelstra TAT (1972) A survey of linear polarization at 1415 MHz. IV. Discussion of the results for the galactic spurs. A&A 21:61

    Google Scholar 

  • Sterken JV, Strub P, Krüger H, von Steiger R, Frisch P (2015) Sixteen years of Ulysses interstellar dust measurements in the solar system. III. Simulations and data unveil new insights into local interstellar dust. ApJ 812:141

    Google Scholar 

  • Stothers R, Frogel JA (1974) The local complex of 0 and B stars. I. Distribution of stars and interstellar dust. AJ 79:456

    Google Scholar 

  • Su M, Slatyer RT, Finkbeiner PD (2010) Giant gamma-ray bubbles from Fermi-Lat. ApJ 724:1044–1082

    Article  ADS  Google Scholar 

  • Sun HX, Landecker LT, Gaensler MB, Carretti E, Reich W, Leahy JP, McClure-Griffiths NM, Crocker MR, Wolleben M, Haverkorn M, Douglas AK, Gray DA (2015) Faraday tomography of the North Polar Spur: constraints on the distance to the Spur and on the magnetic field of the galaxy. ApJ 811:40. doi:10.1088/0004-637X/811/1/40

    Article  ADS  Google Scholar 

  • Tenorio-Tagle G, Rozyczka M, Franco J, Bodenheimer P (1991) On the evolution of supernova remnants. II - Two-dimensional calculations of explosions inside pre-existing wind-driven bubbles. MNRAS 251:318–329. doi:10.1093/mnras/251.2.318

    Google Scholar 

  • Tenorio-Tagle G, Bodenheimer P, Franco J, Rozyczka M (1990) On the evolution of supernova remnants. I - Explosions inside pre-existing wind-driven bubbles. MNRAS 244:563–576.

    Google Scholar 

  • Tetzlaff N, Torres G, Neuhäuser R, Hohle MM (2013) The neutron star born in the Antlia supernova remnant. MNRAS 435:879–884. doi:10.1093/mnras/stt1358

    Article  ADS  Google Scholar 

  • Toalá JA, Guerrero AM, Chu HY, Gruendl AR (2015) On the diffuse X-ray emission from the Wolf-Rayet bubble NGC 2359. MNRAS 446:1083–1089. doi:10.1093/mnras/stu2163

    Article  ADS  Google Scholar 

  • Toalá JA, Guerrero AM, Chu HY, Arthur JS, Tafoya D, Gruendl RA (2016) X-ray emission from the Wolf-Rayet bubble NGC 6888 – II. XMM-Newton EPIC observations. MNRAS 456:4305–4314. doi:10.1093/mnras/stv2819

    Google Scholar 

  • Toalá JA, Arthur JS (2011) Radiation-hydrodynamic Models of the evolving circumstellar medium around massive Stars. ApJ 737:100. doi:10.1088/0004-637X/737/2/100

    Article  ADS  Google Scholar 

  • van Marle AJ, Smith N, Owocki PS, van Veelen B (2010) Numerical models of collisions between core-collapse supernovae and circumstellar shells. MNRAS 407:2305–2327. doi:10.1111/j.1365-2966.2010.16851.x

    Article  ADS  Google Scholar 

  • van Marle AJ, Meliani Z, Marcowith A (2015) Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field. A&A 584:A49. doi:10.1051/0004-6361/201425230

    Article  ADS  Google Scholar 

  • Vidal M, Dickinson C, Davies DR, Leahy PJ (2015) Polarized radio filaments outside the galactic plane. MNRAS 452:656–675. doi:10.1093/mnras/stv1328

    Article  ADS  Google Scholar 

  • Wallner A, Feige J, Kinoshita N, Paul M, Fifield KL, Golser R, Honda M, Linnemann U, Matsuzaki H, Merchel S, Rugel G, Tims GS, Steier P, Yamagata T, Winkler RS (2016) Recent near-Earth supernovae probed by global deposition of interstellar radioactive60Fe. Nature 532:69–72. doi:10.1038/nature17196

    Article  ADS  Google Scholar 

  • Washimi H, Tanaka T (1999) MHD structure of the heliosphere and its response to the 11-year solar cycle variations. Adv Space Res 23:551–560

    Article  ADS  Google Scholar 

  • Weaver R, McCray R, Castor J, Shapiro P, Moore R (1977) Interstellar bubbles. II - Structure and evolution. ApJ 218:377–395. doi:10.1086/155692

    Google Scholar 

  • Welsh YB, Shelton LR (2009) The trouble with the local bubble. Ap&SS 323:1–16. doi:10.1007/s10509-009-0053-3

    Article  ADS  Google Scholar 

  • Welty ED, Hobbs ML, Lauroesch TJ, Morton CD, Spitzer L, York DG (1999) The diffuse interstellar clouds toward 23 Orionis. ApJS 124:465–501

    Article  ADS  Google Scholar 

  • Welty ED, Jenkins BE, Raymond CJ, Mallouris C, York GD (2002) ApJ 579:304

    Article  ADS  Google Scholar 

  • Wiedenbeck ME, Binns WR, Christian ER, Cummings AC, Dougherty BL, Hink PL, Klarmann J, Leske RA, Lijowski M, Mewaldt RA, Stone EC, Thayer MR, von Rosenvinge TT, Yanasak NE (1999) Constraints on the time delay between nucleosynthesis and cosmic-ray acceleration from observations of59Ni and59Co. ApJ Lett 523:L61–L64. doi:10.1086/312242

    Article  ADS  Google Scholar 

  • Williamson OF, Sanders TW, Kraushaar LW, McCammon D, Borken R, Bunner NA (1974) Observation of features in the soft X-ray background flux. ApJ Lett 193:L133–L137. doi:10.1086/181649

    Article  ADS  Google Scholar 

  • Witte M (2004) Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument. A&A 426:835–844. doi:10.1051/0004-6361:20035956

    Google Scholar 

  • Wolff B, Koester D (1999) Lallement R Evidence for an ionization gradient in the local interstellar medium: EUVE observations of white dwarfs. A&A 346:969

    ADS  Google Scholar 

  • Wolleben M (2007) A new model for the Loop I (North Polar Spur) region. ApJ 664:349–356. doi:10.1086/518711

    Article  ADS  Google Scholar 

  • Yadav N, Mukherjee D, Sharma P, Nath BB (2016) Supernovae under microscope: how supernovae overlap to form superbubbles. ArXiv e-prints

    Google Scholar 

  • Zank GP (2015) Faltering steps into the galaxy: the boundary regions of the heliosphere. Ann Rev Astron Astrophys 53:449-500. doi:10.1146/annurev-astro-082214-122254

    Article  ADS  Google Scholar 

  • Zank GP, Frisch PC ApJ (1999) Consequences of a change in the galactic environment of the sun. 518:965–973

    Google Scholar 

  • Zirnstein EJ, Heerikhuisen J, Funsten HO, Livadiotis G, McComas DJ, Pogorelov NV (2016) Local interstellar magnetic field determined from the interstellar boundary explorer ribbon. ApJ Lett 818:L18. doi:10.3847/2041-8205/818/1/L18

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PCF would like to thank NASA for the support of this research through the IBEX funding component of the NASA Explorer program and through a grant from the Space Telescope Science Institute. VVD is grateful for the support from NASA Emerging Worlds grant NNX15AH70G. His work on supernovae, circumstellar interaction, and wind-blown bubbles has been supported over the years by NASA and the Chandra X-ray Center. VVD acknowledges useful discussions with the members of Team 351 at the ISSI in Bern, Switzerland, April 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla Frisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Frisch, P., Dwarkadas, V.V. (2016). Effect of Supernovae on the Local Interstellar Material. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics