Skip to main content

Focused Ion Beam (FIB) Technology for Micro- and Nanoscale Fabrications

  • Chapter
  • First Online:
FIB Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

Abstract

The focused ion beam (FIB) technology has become increasingly popular fabrication and characterization tool across many research areas from nanotechnology, material science, microelectronic industry, life science, biology, and medicine. FIB was specially recognized as an attractive tool or the fabrication of micro- and nanostructures with complex geometries and shapes. This chapter presents the basic introduction of FIB dual-beam system and its operation modes, followed by description of instrument in more details. The review has emphasis on FIB fabrication of nanostructures by milling and deposition methods with particular focus on fabrication of nanopatterns and nanopore arrays. Various efforts to fabricate micro- and nanoscale structure and geometrically complex structure are described. Finally, recent developments of applications of FIB in different areas of material science and life science are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Melngailis, J.: Focused ion beam technology and applications. J. Vac. Sci. Technol. B 5(2), 469–495 (1987)

    Article  Google Scholar 

  2. Stewart, D., Doyle, K., Andrew, F., Casey, Jr. J., David: Focused ion beam deposition of new materials: dielectric films for device modification and mask repair, and tantalum films for X-ray mask repair. In: Proc. SPIE. vol. 276, pp. 276–283. (1995)

    Google Scholar 

  3. Smidt, F.A., Hubler, G.K.: Recent advances in ion beam modification of metals. Nucl. Instr. Meth. Phys. Res. B80/81 1, 207–216 (1993)

    Article  Google Scholar 

  4. Reyntjens, S., De Bruyker, D., Puers, R.: Focused ion beam as an inspection tool for microsystem technology. In: Proc. Microsystem Symp. p. 125. Delft, The Netherlands (1998)

    Google Scholar 

  5. Ward, B.W., Economou, N.P., Shaver, D.C., Ivory, J.E., Ward, M.L., Stern, L.A.: Microcircuit modification using focused ion beams. In: Proc. SPIE. p. 923. (1988)

    Google Scholar 

  6. Glanville, J.: Focused ion beam technology for integrated circuit modification. Solid State Tech. 32, 270 (1989)

    Google Scholar 

  7. Stewart, D.K., Stern, L.A., Foss, G., Hughes, G., Govil, P.: Focused ion beam induced tungsten deposition for repair of clear defects on X-ray masks. In: Proc. SPIE. p. 1263. (1990)

    Google Scholar 

  8. Walker, J.F., Reiner, J.C., Solenthaler, C.: Focused ion beam sample preparation for TEM. Proc. Microscop Semiconductor Material Conf., Oxford (1995)

    Google Scholar 

  9. Athas, G.J., Noll, K.E., Mello, R., Hill, R., Yansen, D., Wenners, F.F., Nadeau, J.P., Ngo, T., Siebers, M.: Focused ion beam system for automated MEMS prototyping and processing. In: Proc. SPIE, vol. 3223, p. 198. (1997)

    Google Scholar 

  10. Daniel, J.H., Moore, D.F.: A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process. Sens. Actuator A Phys. 73(3), 201–209 (1999)

    Article  Google Scholar 

  11. Brugger, J., Beljakovic, G., Despont, M., de Rooij, N.F., Vettiger, P.: Silicon micro/nanomechanical device fabrication based on focused ion beam surface modification and KOH etching. Microelectron. Eng. 35(1–4), 401–404 (1997)

    Article  Google Scholar 

  12. Giannuzzi, Lucille, A., Stevie, F.A.: Introduction to focused ion beams: Instrumentation, theory, techniques, and practice. New York: Springer (2005)

    Google Scholar 

  13. Volkert, C., Minor, A.: Focused ion beam microscopy and micromachining. Mrs Bull 32(5), 389–395 (2007)

    Google Scholar 

  14. Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11(287), 300 (2001)

    Google Scholar 

  15. Thornell, G., Johansson, S.: Microprocessing at the fingertips. J. Micromech. Microeng. 8, 251 (1998)

    Article  Google Scholar 

  16. Johansson, S., Schweitz, J.A., Westberg, H., Boman, M.: Microfabrication of three-dimensional boron structures by laser chemical processing. J. Appl. Phys. 72, 5956 (1992)

    Article  Google Scholar 

  17. Gierak, J.: Focused ion beam technology and ultimate applications. Semicond. Sci. Tech. 24, 23 (2009)

    Article  Google Scholar 

  18. Kim, C.S., Ahn, S.H., Jang, D.Y.: Review: developments in micro/nanoscale fabrication by focused ion beams. Vacuum 86(8), 1014–1035 (2012)

    Article  Google Scholar 

  19. Urbanek, M., Uhlíř, V., Bábor, P., Kolíbalová, E., Hrnič́ř, T., Spousta, J., Šikola, T.: Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process. Nanotechnology 21, 145305 (2010)

    Article  Google Scholar 

  20. Storm, A.J., Chen, J.H., Ling, X.S., Zandbergen, H.W., Dekker, C.: Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2(8), 537–540 (2003)

    Article  Google Scholar 

  21. Chang, H., Iqbal, S.M., Stach, E.A., King, A.H., Zaluzec, N.J., Bashir, R.: Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Appl. Phys. Lett. 88 (2006)

    Google Scholar 

  22. Wu, M., Krapf, D., Zandbergen, M., Zandbergen, H.W., Batson, P.E.: Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett. 87, 113106-1–113106-3 (2005)

    Google Scholar 

  23. Apel, P.Y., Akimenko, A., Blonskaya, I., Cornelius, T., Neumann, R., Schwartz, K., Spohr, R., Trautmann, C.: Etching of nanopores in polycarbonate irradiated with swift heavy ions at 15K. Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interactions with Materials and Atoms 245(1), 284–287 (2006)

    Google Scholar 

  24. Fu, Y.B., Ngoi, K., Ann, F., Loh, T.: Fabrication and characterization of nanopore array. J. Nanosci. Nanotechnol. 6(7), 1954–1960 (2006)

    Article  Google Scholar 

  25. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M.J., Golovchenko, J.A.: Ion-beam sculpting at nanometre length scales. Nature 412(6843), 166–169 (2001)

    Google Scholar 

  26. Kim, M.J., Wanunu, M., Bell, D.C., Meller, A.: Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater. 18(23), 3149–3153 (2006)

    Article  Google Scholar 

  27. Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A.J., Gleeson, J.P., Redmond, G., Arrigan, D.W.M.: Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 79(8), 3048–3055 (2007)

    Article  Google Scholar 

  28. Langford, R.M.: Focused ion beam nanofabrication: a comparison with conventional processing techniques. J. Nanosci. Nanotechnol. 6(3), 661–668 (2006)

    Article  Google Scholar 

  29. Wei, H.-X., Langford, R.M., Han, X., Coey, J.M.D.: Controlled fabrication of nickel perpendicular nanocontacts using focused ion beam milling. J. Appl. Phys. 99(8), 8C501–8C503 (2006)

    Google Scholar 

  30. Ch Santschi, M.J., Hoffmann, P., Brugger, J.: Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology 17, 2722 (2006)

    Article  Google Scholar 

  31. McNally, B., Singer, A., Yu, Z., Sun, Y., Weng, Z., Meller, A.: Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett. 10(6), 2237–2244 (2010)

    Article  Google Scholar 

  32. Kwon, N., Kim, K., Heo, J., Chung, I.: Fabrication of ordered anodic aluminum oxide with matrix arrays of pores using nanoimprint. In: AVS, pp. 803–807. (2009)

    Google Scholar 

  33. Shingubara, S., Maruo, S., Yamashita, T., Nakao, M., Shimizu, T.: Reduction of pitch of nanohole array by self-organizing anodic oxidation after nanoimprinting. Microelectron. Eng. 87(5–8), 1451–1454 (2010)

    Article  Google Scholar 

  34. Choi, J., Wehrspohn, R.B., Gösele, U.: Mechanism of guided self-organization producing quasi-monodomain porous alumina. Electrochim. Acta 50(13), 2591–2595 (2005)

    Article  Google Scholar 

  35. Liu, C.Y., Datta, A., Wang, Y.L.: Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 78(1), 120–122 (2001)

    Article  Google Scholar 

  36. Bo Chen, K.L., Zhipeng, T.: Understanding focused ion beam guided anodic alumina nanopore development. Electrochim. Acta 56, 9802–9807 (2011)

    Article  Google Scholar 

  37. Chen, B., Lu, K., Tian, Z.: Novel patterns by focused ion beam guided anodization. Langmuir 27(2), 800–808 (2010)

    Article  Google Scholar 

  38. Lillo, M., Losic, D.: Ion-beam pore opening of porous anodic alumina: the formation of single nanopore and nanopore arrays. Mater. Lett. 63(3–4), 457–460 (2009)

    Article  Google Scholar 

  39. Miller, M.K., Russell, K.F., Thompson, K., Alvis, R., Larson, D.J.: Review of atom probe FIB-based specimen preparation methods. Microsc. Microanal. 13(6), 428–436 (2007)

    Article  Google Scholar 

  40. Larson, D.J., Foord, D.T., Petford-Long, A.K., Anthony, T.C., Rozdilsky, I.M., Cerezo, A., Smith, G.W.D.: Focused ion-beam milling for field-ion specimen preparation: preliminary investigations. Ultramicroscopy 75(3), 147–159 (1998)

    Article  Google Scholar 

  41. Miller, M.K., Russell, K.F.: FIB-based atom probe specimen preparation of powders. Microsc. Microanal. 12, 1294–1295 (2006)

    Article  Google Scholar 

  42. Vasile, M.J., Grigg, D., Griffith, J.E., Fitzgerald, E., Russell, P.E.: Scanning probe tip geometry optimized for metrology by focused ion beam ion milling. J. Vac. Sci. Tech. B 9(6), 3569–3572 (1991)

    Article  Google Scholar 

  43. Matsui, S., Kaito, T., Fujita, J.-i., Komuro, M., Kanda, K., Haruyama, Y.: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vac. Sci. Technol. B: Microelectron Nanomet, 18(6), 3181–3184 (2000)

    Google Scholar 

  44. Fujita, J., Ishida, M., Ichihashi, T., Ochiai, Y., Kaito, T., Matsui, S.: Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 472–477 (2003)

    Article  Google Scholar 

  45. Fujita, J., Ishida, M., Sakamoto, T., Ochiai, Y., Kaito, T., Matsui, S.: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition. J. Vac. Sci. Technol. B, 19(6), 2834–2837 (2001)

    Google Scholar 

  46. Kim, Y.K., Danner, A.J., Raftery, J.J., Choquette, K.D.: Focused ion beam nanopatterning for optoelectronic device fabrication. IEEE J. Quant. Electron. 11(6), 1292–1298 (2005)

    Google Scholar 

  47. Nordseth, O., Kjellman, J.O., You, C.C., Royset, A., Tybell, T., Grepstad, J.K.: The case for electro-optic waveguide devices from ferroelectric (Pb,La) (Zr,Ti)O3 thin film epilayers. In: SPIE China pp. 73810F. (2009)

    Google Scholar 

  48. Steckl, A.J.: Exploring the frontiers of optoelectronics with FIB technology. In: Frontiers in Electronics, Advanced Workshop. pp. 47–50. (1997)

    Google Scholar 

  49. Wirth, R.: Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur. J. Mineral. 16(6), 863–876 (2004)

    Article  Google Scholar 

  50. Lemmens, H., Butcher, A., Richards, D., Laughrey, C., Dixon, M.: Imaging techniques for 2D and 3D characterization of unconventional reservoirs core and cuttings samples; and how to integrate them. Society of Petroleum Engineers—SPE Americas Unconventional Gas Conference. vol. 1, pp. 555–557. (2011)

    Google Scholar 

  51. Lemmens, H.J., Butcher, A.R., Botha, P.W.S.K.: FIB/SEM and automated mineralogy for core and cuttings analysis. Society of Petroleum Engineers—SPE Russian Oil and Gas Technical Conference and Exhibition. vol. 2, pp. 881–884. (2010)

    Google Scholar 

  52. Heaney, P.J., Vicenzi, E.P., Giannuzzi, L.A., Livi, K.J.T.: Focused ion beam milling: a method of site-specific sample extraction for microanalysis of earth and planetary materials. Am. Mineral. 86(9), 1094–1099 (2001)

    Google Scholar 

  53. Sivel, V.G.M., Van Den Brand, J., Wang, W.R., Mohdadi, H., Tichelaar, F.D., Alkemade, P.F.A., Zandbergen, H.W.: Application of the dual-beam FIB/SEM to metals research. J. Microsc. 214(3), 237–245 (2004)

    Article  Google Scholar 

  54. Xhoffer, C., Dhont, A., Willems, A.: The use of focused ion beam in metal research. Yejin Fenxi/Metallurg. Anal. 32(7), 7–11 (2012)

    Google Scholar 

  55. Mathew, J.V., Bhattacharjee, S.: Multi-element focused ion beams using compact microwave plasma ion source. Indian J. Phys. 85(12), 1863–1870 (2011)

    Article  Google Scholar 

  56. Schulz, R.: Focused ion beam (FIB)—applications as a research tool in surface finishing. Focused ion beam (FIB). Galvanotechnik 102(10), 2174–2181 (2011)

    Google Scholar 

  57. Schindler, G., Klandzevski, V., Steinlesberger, G., Steinhögl, W., Traving, M., Engelhardt, M.A.: Morphology study of copper and aluminum interconnects. Advanced Metallization Conference. pp. 213–217. (2003)

    Google Scholar 

  58. Shinji, M., Yukinori, O.: Focused ion beam applications to solid state devices. Nanotechnology 7, 247 (1996)

    Article  Google Scholar 

  59. Nan, L.K., Lung, L.M.: TEM sample preparation by single-sided low-energy ion beam etching. 19th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA (2012)

    Google Scholar 

  60. Oh, J., Kim, J., Lee, J., Kim, J., Back, T., Kim, W., Kim, H., Kim, C.: Evaluation of electrical properties of cell area on the semiconductor devices by FIB technique. 37th International Symposium for Testing and Failure Analysis, ISTFA. pp. 443–445. (2011)

    Google Scholar 

  61. Dhara, S., Lu, C.Y., Wu, C.T., Hsu, C.W., Tu, W.S., Chen, K.H., Wang, Y.L., Chen, L.C., Raj, B.: Focused ion beam induced nanojunction and defect doping as a building block for nanoscale electronics in GaN nanowires. J. Phys. Chem. C 114(36), 15260–15265 (2010)

    Article  Google Scholar 

  62. Kasianowicz, J.J.B.E., Branton, D., Deamer, D.W.: Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. 93, 13770–13773 (1996)

    Article  Google Scholar 

  63. Mathé, J.A.A., Nelson, D.R., Schulten, K., Meller, A.: Orientation discrimination of single stranded DNA inside the α-Hemolysin membrane channel. Proc. Natl. Acad. Sci. 102, 12377–12382 (2005)

    Article  Google Scholar 

  64. Terada, D., Hattori, S., Honda, T., Iitake, M., Kobayashi, H.: Embossed-carving processing of cytoskeletons of cultured cells by using focused ion beam technology. Microsc. Res. Tech. 76(3), 290 (2013)

    Article  Google Scholar 

  65. Grandfield, K., Engqvist, H.: Focused ion beam in the study of biomaterials and biological matter. Adv. Mater. Sci. Eng. 6, 841961 (2012)

    Google Scholar 

  66. Schertel, A., Kraft, D., Rauscher, M.: Applications of SEM/FIB technology in life science. Microsc. Microanal. 15(2), 344–345 (2009)

    Article  Google Scholar 

  67. Yamazaki, A., Morita, Y., Kim, Y., Owari, M.: Cross-section analysis of a laminated film by dual FIB ToF-SIMS. E. J. Surfac. Sci. Nanotechnol. 9, 426–429 (2011)

    Article  Google Scholar 

  68. Sezen, M., Plank, H., Fisslthaler, E., Chernev, B., Zankel, A., Tchernychova, E., Blümel, A., List, E.J.W., Grogger, W., Pölt, P.: An investigation on focused electron/ion beam induced degradation mechanisms of conjugated polymers. Phys. Chem. Chem. Phys. 13(45), 20235–20240 (2011)

    Article  Google Scholar 

  69. Mariam, A.A.I., Jongin, H., Phillip, K., Emanuele, I., Joshua, B.E., Tim, A.: Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. J. Phys. Condens. Matter 22, 454128 (2010)

    Article  Google Scholar 

  70. Mulero, R., Prabhu, A.S., Freedman, K.J., Kim, M.J.: Nanopore-based devices for bioanalytical applications. JALA 15(3), 243–252 (2010)

    Google Scholar 

  71. Ayub, M., Ivanov, A., Hong, J., Kuhn, P., Instuli, E., Edel, J.B., Albrecht, T.: Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. J. Phys. Condens. Matter 22(45) (2010)

    Google Scholar 

  72. Stevie, F.A., Irwin, R.B., Shofner, T.L., Brown, S.R., Drown, J.L., Giannuzzi, L.A.: Plan view TEM sample preparation using the focused ion beam lift-out technique. In: AIP Conf. Proc. p. 868. (1998)

    Google Scholar 

  73. Gnauck, P., Hoffrogge, P.A.: New SEM/FIB crossbeam inspection tool for high resolution materials and device characterization. In: Proc. SPIE. pp. 106–113. (2003)

    Google Scholar 

  74. Proff, C., Abolhassani, S., Dadras, M.M., Lemaignan, C.: In situ oxidation of zirconium binary alloys by environmental SEM and analysis by AFM, FIB, and TEM. J. Nucl. Mater. 404(2), 97–108 (2010)

    Article  Google Scholar 

  75. Nam, C.Y., Kim, J.Y., Fischer, J.E.: Focused-ion-beam platinum nanopatterning for GaN nanowires: ohmic contacts and patterned growth. Appl. Phys. Lett. 86(19), 193112–193113 (2005)

    Article  Google Scholar 

  76. Guo, D., Kometani, R., Warisawa, S.i., Ishihara, S.: Three-Dimensional nanostructure fabrication by controlling downward growth on focused-ion-beam chemical vapour deposition. Jpn. J. Appl. Phys. 51(6), 5001 (2012)

    Google Scholar 

  77. Ke, J.J., Tsai, K.T., Dai, Y.A., He, J.H.: Contact transport of focused ion beam-deposited Pt to Si nanowires: from measurement to understanding. Appl. Phys. Lett. 5, 100 (2012)

    Google Scholar 

  78. Naik, J.P., Prewett, P.D., Das, K., Raychaudhuri, A.K.: Instabilities in focused ion beam-patterned Au nanowires. Microelectron. Eng. 88(9), 2840–2843 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Australian Research Council (FT 110100711, LP 100100272) and the University of Adelaide for this work. The author also thanks Mr. L. Green from Adelaide Microscopy and FEI Company for technical and FIB imaging support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Losic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kant, K., Losic, D. (2013). Focused Ion Beam (FIB) Technology for Micro- and Nanoscale Fabrications. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_1

Download citation

Publish with us

Policies and ethics