Skip to main content

Neurodevelopment in Chronic Kidney Disease

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Pediatric chronic kidney disease (CKD) impacts neurocognitive development, including motor and cognitive function, intelligence (IQ), attention, memory, and academic achievement. This chapter provides a comprehensive overview of data evaluating the effects of mild to moderate pediatric CKD, dialysis, and kidney transplantation on cognitive function and development. The age of onset of CKD and the presence of CKD-associated comorbidities are perhaps the most important determinants of developmental outcome. Performance on IQ testing usually places children with CKD within the broad range of average intelligence but with a skew toward the lower end of a normal distribution and with lower performance than siblings. Executive function, memory and attention deficits are also known to occur in the pediatric CKD population. Relevant literature on neurodevelopment in genetic forms of kidney disease, neuroimaging, and the impact of more frequent hemodialysis are reviewed. Long-term educational and vocational outcomes for children diagnosed with CKD are presented, and recommendations for promoting optimal neurodevelopment and academic achievement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 219.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 279.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McGraw ME, Haka-Ikse K. Neurologic-developmental sequelae of chronic renal failure in infancy. J Pediatr. 1985;106(4):579–83.

    Article  CAS  PubMed  Google Scholar 

  2. Rotundo A, Nevins TE, Lipton M, Lockman LA, Mauer SM, Michael AF. Progressive encephalopathy in children with chronic renal insufficiency in infancy. Kidney Int. 1982;21(3):486–91.

    Article  CAS  PubMed  Google Scholar 

  3. Elzouki A, Carroll J, Butinar D, Moosa A. Improved neurological outcome in children with chronic renal disease from infancy. Pediatr Nephrol. 1994;8(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  4. Warady BA, Belden B, Kohaut E. Neurodevelopmental outcome of children initiating peritoneal dialysis in early infancy. Pediatr Nephrol. 1999;13(9):759–65.

    Article  CAS  PubMed  Google Scholar 

  5. Levitt P. Structural and functional maturation of the developing primate brain. J Pediatr. 2003;143(4 Suppl):S35–45.

    Article  CAS  PubMed  Google Scholar 

  6. Brain Development Cooperative G. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. Cereb Cortex. 2012;22(1):1–12.

    Article  Google Scholar 

  7. Sabatini MJ, Ebert P, Lewis DA, Levitt P, Cameron JL, Mirnics K. Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. J Neurosci. 2007;27(12):3295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science. 1999;283(5409):1908–11.

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong FD, Horn M. Educational issues in childhood cancer. Sch Psychol Q. 1995;10:292–304.

    Article  Google Scholar 

  10. Armstrong FD. Neurodevelopment and chronic illness: mechanisms of disease and treatment. Ment Retard Dev Disabil Res Rev. 2006;12:168–73.

    Article  PubMed  Google Scholar 

  11. Armstrong FD, Mulhern RK. Acute lymphoblastic leukemia and brain tumors. In: Brown RT, editor. Cognitive aspects of chronic illness in children. New York: The Guilford Press; 1999. p. 1–14.

    Google Scholar 

  12. Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004;5(7):399–408.

    Article  PubMed  Google Scholar 

  13. Gerson AC, Butler R, Moxey-Mims M, Wentz A, Shinnar S, Lande MB, et al. Neurocognitive outcomes in children with chronic kidney disease: Current findings and contemporary endeavors. Ment Retard Dev Disabil Res Rev. 2006;12(3):208–15.

    Article  PubMed  Google Scholar 

  14. North American Pediatric Renal Trials and Collaborative Studies—NAPRTCS 2014 Annual Transplant Report. Rockville, MD; 2014.

    Google Scholar 

  15. Seikaly MG, Ho PL, Emmett L, Fine RN, Tejani A. Chronic renal insufficiency in children: the 2001 Annual Report of the NAPRTCS. Pediatr Nephrol. 2003;18(8):796–804.

    Article  PubMed  Google Scholar 

  16. Davis ID, Chang PN, Nevins TE. Successful renal transplantation accelerates development in young uremic children. Pediatrics. 1990;86(4):594–600.

    Article  CAS  PubMed  Google Scholar 

  17. Hulstijn-Dirkmaat GM, Damhuis IH, Jetten ML, Koster AM, Schroder CH. The cognitive development of pre-school children treated for chronic renal failure. Pediatr Nephrol. 1995;9(4):464–9.

    Article  CAS  PubMed  Google Scholar 

  18. Shroff R, Wright E, Ledermann S, Hutchinson C, Rees L. Chronic hemodialysis in infants and children under 2 years of age. Pediatr Nephrol. 2003;18(4):378–83.

    Article  PubMed  Google Scholar 

  19. Laakkonen H, Lonnqvist T, Valanne L, Karikoski J, Holmberg C, Ronnholm K. Neurological development in 21 children on peritoneal dialysis in infancy. Pediatr Nephrol. 2011;26(10):1863–71.

    Article  PubMed  Google Scholar 

  20. Hooper SR, Gerson AC, Johnson RJ, Mendley SR, Shinnar S, Lande MB, et al. Neurocognitive, social-behavioral, and adaptive functioning in preschool children with mild to moderate kidney disease. J Dev Behav Pediatr. 2016;37(3):231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Madden SJ, Ledermann SE, Guerrero-Blanco M, Bruce M, Trompeter RS. Cognitive and psychosocial outcome of infants dialysed in infancy. Child Care Health Dev. 2003;29(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  22. Johnson RJ, Warady BA. Long-term neurocognitive outcomes of patients with end-stage renal disease during infancy. Pediatr Nephrol. 2013;28(8):1283–91.

    Article  PubMed  Google Scholar 

  23. Brouhard BH, Donaldson LA, Lawry KW, McGowan KR, Drotar D, Davis I, et al. Cognitive functioning in children on dialysis and post-transplantation. Pediatr Transplant. 2000;4(4):261–7.

    Article  CAS  PubMed  Google Scholar 

  24. Popel J, Joffe R, Acton BV, Bond GY, Joffe AR, Midgley J, et al. Neurocognitive and functional outcomes at 5 years of age after renal transplant in early childhood. Pediatr Nephrol. 2019;34(5):889–95.

    Article  PubMed  Google Scholar 

  25. Hartmann H, Hawellek N, Wedekin M, Vogel C, Das AM, Balonwu K, et al. Early kidney transplantation improves neurocognitive outcome in patients with severe congenital chronic kidney disease. Transpl Int. 2015;28(4):429–36.

    Article  PubMed  Google Scholar 

  26. Fennell RS, Fennell EB, Carter RL, Mings EL, Klausner AB, Hurst JR. Association between renal-function and cognition in childhood chronic-renal-failure. Pediatr Nephrol. 1990;4(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  27. Fennell RS, Fennell EB, Carter RL, Mings EL, Klausner AB, Hurst JR. A longitudinal-study of the cognitive function of children with renal-failure. Pediatr Nephrol. 1990;4(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  28. Fennell RS, Fennell EB, Carter RL, Mings EL, Klausner AB, Hurst JR. Correlations between performance on neuropsychological tests in children with chronic renal failure. Child Nephrol Urol. 1990;10(4):199–204.

    CAS  PubMed  Google Scholar 

  29. Gipson DS, Duquette PJ, Icard PF, Hooper SR. The central nervous system in childhood chronic kidney disease. Pediatr Nephrol. 2007;22(10):1703–10.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bawden HN, Acott P, Carter J, Lirenman D, MacDonald GW, McAllister M, et al. Neuropsychological functioning in end-stage renal disease. Arch Dis Child. 2004;89(7):644–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qvist E, Pihko H, Fagerudd P, Valanne L, Lamminranta S, Karikoski J, et al. Neurodevelopmental outcome in high-risk patients after renal transplantation in early childhood. Pediatr Transplant. 2002;6(1):53–62.

    Article  PubMed  Google Scholar 

  32. Hooper SR, Gerson AC, Butler RW, Gipson DS, Mendley SR, Lande MB, et al. Neurocognitive functioning of children and adolescents with mild-to-moderate chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(8):1824–30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duquette PJ, Hooper SR, Wetherington CE, Icard PF, Gipson DS. Brief report: intellectual and academic functioning in pediatric chronic kidney disease. J Pediatr Psychol. 2007;32(8):1011–7.

    Article  PubMed  Google Scholar 

  34. Groothoff JW, Grootenhuis M, Dommerholt A, Gruppen MP, Offringa M, Heymans HS. Impaired cognition and schooling in adults with end stage renal disease since childhood. Arch Dis Child. 2002;87(5):380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gipson DS, Hooper SR, Duquette PJ, Wetherington CE, Stellwagen KK, Jenkins TL, et al. Memory and executive functions in pediatric chronic kidney disease. Child Neuropsychol. 2006;12(6):391–405.

    Article  PubMed  Google Scholar 

  36. Johnson RJ, Gerson AC, Harshman LA, Matheson MB, Shinnar S, Lande MB, et al. A longitudinal examination of parent-reported emotional-behavioral functioning of children with mild to moderate chronic kidney disease. Pediatr Nephrol. 2020;35(7):1287–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruebner RL, Laney N, Kim JY, Hartung EA, Hooper SR, Radcliffe J, et al. Neurocognitive dysfunction in children, adolescents, and young adults with CKD. Am J Kidney Dis. 2016;67(4):567–75.

    Article  PubMed  Google Scholar 

  38. Lande MB, Mendley SR, Matheson MB, Shinnar S, Gerson AC, Samuels JA, et al. Association of blood pressure variability and neurocognition in children with chronic kidney disease. Pediatr Nephrol. 2016;31(11):2137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Harshman LA, Johnson RJ, Matheson MB, Kogon AJ, Shinnar S, Gerson AC, et al. Academic achievement in children with chronic kidney disease: a report from the CKiD cohort. Pediatr Nephrol. 2019;34(4):689–96.

    Article  PubMed  Google Scholar 

  40. Reynolds JM, Morton MJ, Garralda ME, Postlethwaite RJ, Goh D. Psychosocial adjustment of adult survivors of a paediatric dialysis and transplant programme. Arch Dis Child. 1993;68(1):104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Offner G, Latta K, Hoyer PF, Baum HJ, Ehrich JH, Pichlmayr R, et al. Kidney transplanted children come of age. Kidney Int. 1999;55(4):1509–17.

    Article  CAS  PubMed  Google Scholar 

  42. Kerklaan J, Hannan E, Hanson C, Guha C, Cho Y, Christian M, et al. Perspectives on life participation by young adults with chronic kidney disease: an interview study. BMJ Open. 2020;10(10):e037840.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen K, Didsbury M, van Zwieten A, Howell M, Kim S, Tong A, et al. Neurocognitive and educational outcomes in children and adolescents with CKD: a systematic review and meta-analysis. Clin J Am Soci Nephrol. 2018;13(3):387–97.

    Article  Google Scholar 

  44. Icard P, Hooper SR, Gipson DS, Ferris ME. Cognitive improvement in children with CKD after transplant. Pediatr Transplant. 2010;14(7):887–90.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mendley SR, Zelko FA. Improvement in specific aspects of neurocognitive performance in children after renal transplantation. Kidney Int. 1999;56(1):318–23.

    Article  CAS  PubMed  Google Scholar 

  46. So SK, Chang PN, Najarian JS, Mauer SM, Simmons RL, Nevins TE. Growth and development in infants after renal transplantation. J Pediatr. 1987;110(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  47. Falger J, Latal B, Landolt MA, Lehmann P, Neuhaus TJ, Laube GF. Outcome after renal transplantation. Part I: intellectual and motor performance. Pediatr Nephrol. 2008;23(8):1339–45.

    Article  PubMed  Google Scholar 

  48. Molnar-Varga M, Novak M, Szabo AJ, Kelen K, Streja E, Remport A, et al. Neurocognitive functions of pediatric kidney transplant recipients. Pediatr Nephrol. 2016;31(9):1531–8.

    Article  PubMed  Google Scholar 

  49. Suri D, Vaidya VA. Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience. 2013;239:196–213.

    Article  CAS  PubMed  Google Scholar 

  50. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Antonow-Schlorke I, Schwab M, Li C, Nathanielsz PW. Glucocorticoid exposure at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal baboon brain. J Physiol. 2003;547(Pt 1):117–23.

    Article  CAS  PubMed  Google Scholar 

  52. Bechstein WO. Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl Int. 2000;13(5):313–26.

    Article  CAS  PubMed  Google Scholar 

  53. Veroux P, Veroux M, Puliatti C, Morale W, Cappello D, Valvo M, et al. Tacrolimus-induced neurotoxicity in kidney transplant recipients. Transplant Proc. 2002;34(8):3188–90.

    Article  CAS  PubMed  Google Scholar 

  54. Neu AM, Furth SL, Case BW, Wise B, Colombani PM, Fivush BA. Evaluation of neurotoxicity in pediatric renal transplant recipients treated with tacrolimus (FK506). Clin Transpl. 1997;11(5 Pt 1):412–4.

    CAS  Google Scholar 

  55. Parvex P, Pinsk M, Bell LE, O'Gorman AM, Patenaude YG, Gupta IR. Reversible encephalopathy associated with tacrolimus in pediatric renal transplants. Pediatr Nephrol. 2001;16(7):537–42.

    Article  CAS  PubMed  Google Scholar 

  56. Bennett PC, Zhao W, Lawen A, Ng KT. Cyclosporin A, an inhibitor of calcineurin, impairs memory formation in day-old chicks. Brain Res. 1996;730(1–2):107–17.

    Article  CAS  PubMed  Google Scholar 

  57. McDonald JW, Goldberg MP, Gwag BJ, Chi SI, Choi DW. Cyclosporine induces neuronal apoptosis and selective oligodendrocyte death in cortical cultures. Ann Neurol. 1996;40(5):750–8.

    Article  CAS  PubMed  Google Scholar 

  58. Maramattom BV, Wijdicks EFM. Sirolimus may not cause neurotoxicity in kidney and liver transplant recipients. Neurology. 2004;63:1958–9.

    Article  CAS  PubMed  Google Scholar 

  59. Serkova N, Jacobsen W, Niemann CU, Litt L, Benet LZ, Leibfritz D, et al. Sirolimus, but not the structurally related RAD (everolimus), enhances the negative effects of cyclosporine on mitochondrial metabolism in the rat brain. Br J Pharmacol. 2001;133(6):875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hildebrandt F. Genetic kidney diseases. Lancet. 2010;375(9722):1287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S, et al. Large recurrent microdeletions associated with schizophrenia. Nature. 2008;455(7210):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elia J, Glessner JT, Wang K, Takahashi N, Shtir CJ, Hadley D, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet. 2011;44(1):78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shaw-Smith C, Pittman AM, Willatt L, Martin H, Rickman L, Gribble S, et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet. 2006;38(9):1032–7.

    Article  CAS  PubMed  Google Scholar 

  65. Sanna-Cherchi S, Kiryluk K, Burgess KE, Bodria M, Sampson MG, Hadley D, et al. Copy-number disorders are a common cause of congenital kidney malformations. Am J Hum Genet. 2012;91(6):987–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Passer JA. Cerebral atrophy in end-stage uremia. Proc Clin Dial Transplant Forum. 1977;7:91–4.

    CAS  PubMed  Google Scholar 

  67. Papageorgiou C, Ziroyannis P, Vathylakis J, Grigoriadis A, Hatzikonstantinou V, Capsalakis Z. A comparative study of brain atrophy by computerized tomography in chronic renal failure and chronic hemodialysis. Acta Neurol Scand. 1982;66(3):378–85.

    Article  CAS  PubMed  Google Scholar 

  68. Steinberg A, Efrat R, Pomeranz A, Drukker A. Computerized tomography of the brain in children with chronic renal failure. Int J Pediatr Nephrol. 1985;6(2):121–6.

    CAS  PubMed  Google Scholar 

  69. Schnaper HW, Cole BR, Hodges FJ, Robson AM. Cerebral cortical atrophy in pediatric patients with end-stage renal disease. Am J Kidney Dis. 1983;2(6):645–50.

    Article  CAS  PubMed  Google Scholar 

  70. La Greca G, Biasioli S, Chiaramonte S, Dettori P, Fabris A, Feriani M, et al. Studies on brain density in hemodialysis and peritoneal dialysis. Nephron. 1982;31(2):146–50.

    Article  PubMed  Google Scholar 

  71. Dettori P, La Greca G, Biasioli S, Chiaramonte S, Fabris A, Feriani M, et al. Changes of cerebral density in dialyzed patients. Neuroradiology. 1982;23(2):95–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kretzschmar K, Nix W, Zschiedrich H, Philipp T. Morphologic cerebral changes in patients undergoing dialysis for renal failure. AJNR Am J Neuroradiol. 1983;4(3):439–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hartung EA, Erus G, Jawad AF, Laney N, Doshi JJ, Hooper SR, et al. Brain magnetic resonance imaging findings in children and young adults with CKD. Am J Kidney Dis. 2018;72(3):349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Solomon MA, van der Plas E, Langbehn KE, Novak M, Schultz JL, Koscik TR, et al. Early pediatric chronic kidney disease is associated with brain volumetric gray matter abnormalities. Pediatr Res. 2020;

    Google Scholar 

  75. Kodl CT, Franc DT, Rao JP, Anderson FS, Thomas W, Mueller BA, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 2008;57(11):3083–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kozera GM, Dubaniewicz M, Zdrojewski T, Madej-Dmochowska A, Mielczarek M, Wojczal J, et al. Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension: a pilot study. Am J Hypertens. 2010;23(11):1198–203.

    Article  PubMed  Google Scholar 

  77. Matsuda-Abedini M, Fitzpatrick K, Harrell WR, Gipson DS, Hooper SR, Belger A, et al. Brain abnormalities in children and adolescents with chronic kidney disease. Pediatr Res. 2018;84(3):387–92.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu HS, Hartung EA, Jawad AF, Ware JB, Laney N, Port AM, et al. Regional cerebral blood flow in children and young adults with chronic kidney disease. Radiology. 2018;288(3):849–58.

    Article  PubMed  Google Scholar 

  79. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(7):4259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Simpson JR Jr, Snyder AZ, Gusnard DA, Raichle ME. Emotion-induced changes in human medial prefrontal cortex: I. During cognitive task performance. Proc Natl Acad Sci U S A. 2001;98(2):683–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Raichle ME. The brain's default mode network. Annu Rev Neurosci. 2015;38:433–47.

    Article  CAS  PubMed  Google Scholar 

  83. Group FHNT, Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363(24):2287–300.

    Article  Google Scholar 

  84. Rocco MV, Lockridge RS Jr, Beck GJ, Eggers PW, Gassman JJ, Greene T, et al. The effects of frequent nocturnal home hemodialysis: the Frequent Hemodialysis Network Nocturnal Trial. Kidney Int. 2011;80(10):1080–91.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kurella Tamura M, Unruh ML, Nissenson AR, Larive B, Eggers PW, Gassman J, et al. Effect of more frequent hemodialysis on cognitive function in the frequent hemodialysis network trials. Am J Kidney Dis. 2013;61(2):228–37.

    Article  PubMed  Google Scholar 

  86. Jassal SV, Devins GM, Chan CT, Bozanovic R, Rourke S. Improvements in cognition in patients converting from thrice weekly hemodialysis to nocturnal hemodialysis: a longitudinal pilot study. Kidney Int. 2006;70(5):956–62.

    Article  CAS  PubMed  Google Scholar 

  87. Fischbach M, Fothergill H, Zaloszyc A, Menouer S, Terzic J. Intensified daily dialysis: the best chronic dialysis option for children? Semin Dial. 2011;24(6):640–4.

    Article  PubMed  Google Scholar 

  88. Geary DF, Piva E, Tyrrell J, Gajaria MJ, Picone G, Keating LE, et al. Home nocturnal hemodialysis in children. J Pediatr. 2005;147(3):383–7.

    Article  PubMed  Google Scholar 

  89. Muller D, Zimmering M, Chan CT, McFarlane PA, Pierratos A, Querfeld U. Intensified hemodialysis regimens: neglected treatment options for children and adolescents. Pediatr Nephrol. 2008;23(10):1729–36.

    Article  PubMed  Google Scholar 

  90. Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol. 2007;22(12):1999–2009.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hijazi R, Abitbol CL, Chandar J, Seeherunvong W, Freundlich M, Zilleruelo G. Twenty-five years of infant dialysis: a single center experience. J Pediatr. 2009;155(1):111–7.

    Article  PubMed  Google Scholar 

  92. Ledermann SE, Scanes ME, Fernando ON, Duffy PG, Madden SJ, Trompeter RS. Long-term outcome of peritoneal dialysis in infants. J Pediatr. 2000;136(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  93. Honda M, Kamiyama Y, Kawamura K, Kawahara K, Shishido S, Nakai H, et al. Growth, development and nutritional status in Japanese children under 2 years on continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1995;9(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  94. Bock GH, Conners CK, Ruley J, Samango-Sprouse CA, Conry JA, Weiss I, et al. Disturbances of brain maturation and neurodevelopment during chronic renal failure in infancy. J Pediatr. 1989;114(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  95. Slickers J, Duquette P, Hooper S, Gipson D. Clinical predictors of neurocognitive deficits in children with chronic kidney disease. Pediatr Nephrol. 2007;22(4):565–72.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Crocker JF, Acott PD, Carter JE, Lirenman DS, MacDonald GW, McAllister M, et al. Neuropsychological outcome in children with acquired or congenital renal disease. Pediatr Nephrol. 2002;17(11):908–12.

    Article  PubMed  Google Scholar 

  97. Lawry KW, Brouhard BH, Cunningham RJ. Cognitive functioning and school performance in children with renal failure. Pediatr Nephrol. 1994;8(3):326–9.

    Article  CAS  PubMed  Google Scholar 

  98. Rasbury WC, Fennell RS 3rd, Fennell EB, Morris MK. Cognitive functioning in children with end stage renal disease pre- and post-dialysis session. Int J Pediatr Nephrol. 1986;7(1):45–50.

    CAS  PubMed  Google Scholar 

  99. Fennell RS 3rd, Rasbury WC, Fennell EB, Morris MK. Effects of kidney transplantation on cognitive performance in a pediatric population. Pediatrics. 1984;74(2):273–8.

    Article  PubMed  Google Scholar 

  100. Rasbury WC, Fennell RS 3rd, Morris MK. Cognitive functioning of children with end-stage renal disease before and after successful transplantation. J Pediatr. 1983;102(4):589–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Susan R. Mendley, MD for her contributions to the previous edition of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, R.J., Harshman, L.A. (2023). Neurodevelopment in Chronic Kidney Disease. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics