Skip to main content

Ethno–Phytopharmacology: Product Validation Process Based on Traditional Knowledge of Medicinal Plants

  • Chapter
  • First Online:
Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery

Abstract

Ethno-phytopharmacology studies the traditional use of plants for the prevention and cure of several diseases. It provides multidisciplinary research on components of medicinal plants, their identification and description, properties, modes of action and interactions with the human organism. Search for new bioactive drugs is another aim of these experimental investigations. Since the World Health Organization (WHO) supports and encourages the introduction of traditional medicine resources into health systems around the world, the use of medicinal plants has shown a marked increase. For this reason, interest in applying scientific methods to validate or refute the traditional use of these plants with the rigors of evidence-based medicine to assess safety, efficacy, and quality has become increasingly important. These three concepts govern the twenty-first century therapy inherent to any conventional drug and allow medicinal plants to aid in the development and advancement of modern medicine, serving as a starting point for the design of new, better, and healthier drugs. In this chapter, parameters to validate medicinal plant attributes such as selection and harvest, extraction and processing methods, analytical techniques to isolate and identify bioactive metabolites, biological activity screening, and other aspects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvino Leite, M. C., de Brito Bezerra, A. P., de Sousa, J. P., & de Oliveira Lima, E. (2015). Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains. Medical Mycology, 53(3), 275–284.

    Article  Google Scholar 

  • Andersson, J., Forssberg, H., & Zierath, J. (2016). Avermectin and artemisinin – revolutionary therapies against parasitic diseases. Nobelprize.org. https://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/advanced-medicineprize2015.pdf

  • Arias, T. D. (1999). Glosario de medicamentos: desarrollo, evaluación y uso. Washington, DC: Organización Panamericana de la Salud (OPS). 333 p. ISBN 92 75 32305 4.

    Google Scholar 

  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., et al. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614.

    Article  CAS  Google Scholar 

  • Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6, 71–79.

    Article  Google Scholar 

  • Brusotti, G., Cesari, I., Dentamaro, A., Caccialanza, G., & Massolini, G. (2014). Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. Journal of Pharmaceutical and Biomedical Analysis, 87, 218–228.

    Article  CAS  Google Scholar 

  • Cantón, E., Msrtin, E., & Espinel-ingroff, A. (2007). Métodos estandarizados por el CLSI para el estudio de la sensibilidad a los antifúngicos (documentos M27-A3, M38-A y M44-A). Revista Iberoamericana de Micología, 15, 1. http://www.guia.reviberoammicol.com/Capitulo15.pdf.

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (1999). Methods for determining bactericidal activity of antimicrobial agents (M26-A). Wayne, PA.

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2017a). Reference method for broth dilution antifungal susceptibility testing of yeasts (M27, 4th ed.). Wayne, PA.

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2017b). Reference method for broth dilution antifungal susceptibility testing of filamentous Fungi (M38, 3rd ed., p. 62). Wayne, PA.

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M07, 11th ed.). Wayne, PA.

    Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). (2020). Performance standards for antimicrobial susceptibility testing (M100, 30th ed.). Wayne, PA.

    Google Scholar 

  • Convention on Biological Diversity. (2011). Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising to the Convention on Biological Diversity. https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf

  • Cos, P., Vlietinck, A. J., Vanden, B. D., & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. Journal of Ethnopharmacology, 106(3), 290–302.

    Article  CAS  Google Scholar 

  • Das, K., Tiwari, R. K. S., & Shrivastava, D. K. (2010). Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. Journal of Medicinal Plants Research, 4(2), 104–111.

    Google Scholar 

  • Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., & Dua, T. K. (2015). Bioautography and its scope in the field of natural product chemistry. Journal of Pharmaceutical Analysis, 5(2), 75–84.

    Article  Google Scholar 

  • EMA. (2006). Committee on Herbal Medicinal Products: Guideline on good agricultural and collection practice for starting materials of herbal origin. London. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-agricultural-collection-practice-gacp-starting-materials-herbal-origin_en.pdf

  • Espinel-Ingroff, A., Fothergill, A., Peter, J., Rinaldi, M. G., & Walsh, T. J. (2002). Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for. Journal of Clinical Microbiology, 40(9), 3204–3208.

    Article  CAS  Google Scholar 

  • Espinel-Ingroff, A., Aller, A. I., Canton, E., Castañón-Olivares, L. R., Chowdhary, A., Cordoba, S., Cuenca-Estrella, M., Fothergill, A., Fuller, J., Govender, N., et al. (2012). Cryptococcus neoformans-Cryptococcus gattii species complex: An international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrobial Agents and Chemotherapy, 56(11), 5898–5906.

    Article  CAS  Google Scholar 

  • Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(1), 69–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes-Fiallo VR, Lemes Hernández CM, Rodriguez Ferradá CA, & Germosén-Robineau L. (2000). Manual de cultivo y conservacion de plantas medicinales. Tomo II: Cuba (p. 172). ISSN 1028-4796.

    Google Scholar 

  • Gertsch, J. (2009). How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. Journal of Ethnopharmacology, 122(2), 177–183.

    Article  Google Scholar 

  • Giusiano, G., Rodolfi, M., Mangiaterra, M., Piontelli, E., & Picco, A. M. (2010). Hongos endófitos en 2 plantas medicinales del nordeste argentino. I: Análisis morfotaxonómico de sus comunidades foliares. Boletín Micológico, 25, 15–27.

    Google Scholar 

  • Hazen, K. C. (1998). Fungicidal versus fungistatic activity of terbinafine and itraconazole: An in vitro comparison. Journal of the American Academy of Dermatology, 38, S37–S41.

    Article  CAS  Google Scholar 

  • Hilbay, R., Chamorro Armas, S., González, M., & Palacios, T. (2016). Reingeniería en los procesos de secado, molienda y tamizado de plantas aromáticas para mejorar la calidad de los derivados, caso: Empresa Jambi Kiwa. FIGEMPA Investig y Desarro, 1(6), 89–99.

    Article  Google Scholar 

  • Holetz, F. B., Pessini, G. L., Sanches, N. R., Cortez, A. G., Nakamura, C. V., & Dias Filho, B. P. (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias do Instituto Oswaldo Cruz, 97(7), 1027–1031.

    Article  Google Scholar 

  • Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76(14), 1479–1491.

    Article  CAS  Google Scholar 

  • Kunle, O. F., Egharevba, H. O., & Ahmadu, P. O. (2012). Standardization of herbal medicines – a review. International Journal of Biodiversity and Conservation, 4(3), 101–112.

    Article  Google Scholar 

  • Malheiros, A., Filho, V. C., Schmitt, C. B., Yunes, R. A., Escalante, A., Svetaz, L., Zacchino, S., & Monache, F. D. (2005). Antifungal activity of drimane sesquiterpenes from Drimys brasiliensis using bioassay-guided fractionation. Journal of Pharmaceutical Sciences, 8(2), 335–339.

    CAS  Google Scholar 

  • Matthews, H., Hanison, J., & Nirmalan, N. (2016). “Omics” -informed drug and biomarker discovery: Opportunities, challenges and future perspectives. Proteomes, 4, 28. https://doi.org/10.3390/proteomes4030028.

    Article  PubMed Central  Google Scholar 

  • Meletiadis, J., Meis, J. F. G. M., Mouton, J. W., & Verweij, P. E. (2002). Methodological issues related to antifungal drug interaction modelling for filamentous fungi. Reviews in Medical Microbiology, 13(3), 101–117.

    Article  Google Scholar 

  • Meletiadis, J., Antachopoulos, C., Stergiopoulou, T., Pournaras, S., Roilides, E., & Walsh, T. J. (2007). Differential fungicidal activities of amphotericin B and voriconazole against Aspergillus species determined by microbroth methodology. Antimicrobial Agents and Chemotherapy, 51(9), 3329–3337.

    Article  CAS  Google Scholar 

  • Muñoz, F. (1996). Plantas medicinales y aromáticas: estudio, cultivo y procesado (p. 343). Madrid: Mundi-Prensa Libros.

    Google Scholar 

  • Nazzaro, F., Fratianni, F., Coppola, R., & De Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals, 10(4), 1–20.

    Article  Google Scholar 

  • Ncube, N. S., Afolayan, A. J., & Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology, 7(12), 1797–1806.

    Article  CAS  Google Scholar 

  • Newman, D. J. (2020). Modern traditional Chinese medicine: Identifying, defining and usage of TCM components. In Advances in pharmacology (Vol. 87, 1st ed., pp. 113–158). Elsevier Inc. https://doi.org/10.1016/bs.apha.2019.07.001

  • Newman, D. J., & Cragg, G. M. (2020a). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803.

    Google Scholar 

  • Newman, D. J., & Cragg, G. M. (2020b). Plant endophytes and epiphytes: Burgeoning sources of known and “unknown” cytotoxic and antibiotic agents? Planta Medica. Published online ahead of print, 2020 Feb 5, https://doi.org/10.1055/a-1095-1111

  • Odds, F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. The Journal of Antimicrobial Chemotherapy, 52(1), 1. https://doi.org/10.1093/jac/dkg301.

    Article  PubMed  Google Scholar 

  • Pessini, G. L., Dias Filho, B. P., Nakamura, C. V., & Garcia Cortez, D. A. (2003). Antibacterial activity of extracts and Neolignans from Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck. Memórias do Instituto Oswaldo Cruz, 98(8), 1115–1120.

    Article  CAS  Google Scholar 

  • Pfaller, M. A., Sheehan, D. J., & Rex, J. H. (2004). Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization. Clinical Microbiology Reviews, 17(2), 268–280.

    Article  CAS  Google Scholar 

  • Rates, S. M. K. (2001). Plants as source of drugs. Toxicon, 39, 603–613.

    Article  CAS  Google Scholar 

  • Rojas, F. D., Sosa, M. D. L. A., Fernández, M. S., Cattana, M. E., Córdoba, S. B., & Giusiano, G. (2014). Antifungal susceptibility of Malassezia furfur, Malassezia sympodialis, and Malassezia globosa to azole drugs and amphotericin B evaluated using a broth microdilution method. Medical Mycology, 52, 641–646.

    Article  CAS  Google Scholar 

  • Salvat, A., Antonnacci, L., Fortunato, R. H., Suarez, E. Y., & Godoy, H. M. (2001). Screening of some plants from Northern Argentina for their antimicrobial activity. Letters in Applied Microbiology, 32(5), 293–297.

    Article  CAS  Google Scholar 

  • Sanches, N. R., Garcia Cortez, D. A., Schiavini, M. S., Nakamura, C. V., & Dias Filho, B. P. (2005). An evaluation of antibacterial activities of Psidium guajava (L.). Brazilian Archives of Biology and Technology, 48(3), 429–436.

    Article  CAS  Google Scholar 

  • Sticher, O. (2008). Natural product isolation. Natural Product Reports, 25, 517–554.

    Article  CAS  Google Scholar 

  • Svetaz, L., Tapia, A., López, S. N., Furlán, R. L. E., Petenatti, E., Pioli, R., Schmeda-Hirschmann, G., & Zacchino, S. A. (2004). Antifungal chalcones and new caffeic acids esters from Zuccagnia punctata acting against soybean infecting fungi. Journal of Agricultural and Food Chemistry, 52(11), 3297–3300.

    Article  CAS  Google Scholar 

  • Tallmadge, E. H. (2018). Patenting natural products after myriad. Harvard Journal of Law & Technology, 30(2), 569–600.

    Google Scholar 

  • Tanaka, J. C. A., da Silva, C. C., de Oliveira, A. J. B., & Dias Filho, B. P. (2006). Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Brazilian Journal of Medical and Biological Research, 39, 387–391.

    Article  CAS  Google Scholar 

  • Van Norman, G. A. (2016). Drugs, devices, and the FDA: Part 1: An overview of approval processes for drugs. JACC Basic to Translational Science, 1(3), 170–179.

    Article  Google Scholar 

  • WHO. (1992). Convention on biological diversity. https://www.cbd.int/doc/legal/cbd-en.pdf

  • WHO. (2002). WHO traditional medicine strategy 2002–2005. http://www.beovita.eu/pdf/WHO_EDM_TRM_2004.pdf

  • WHO. (2003). WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants. https://apps.who.int/medicinedocs/pdf/s4928e/s4928e.pdf

  • WHO. (2013). WHO traditional medicine strategy 2014–2023 (p. 76). Honk Kong. ISBN 9241506091, 9789241506090.

    Google Scholar 

  • WHO, IUCN, WWF. (1993). Guidelines on the conservation of medicinal plants (pp 1–38). WHO, IUCN & WWF (Ed.). Gland. ISBN 2-8317-0136-8. https://apps.who.int/medicinedocs/documents/s7150e/s7150e.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mussin, J., Giusiano, G. (2020). Ethno–Phytopharmacology: Product Validation Process Based on Traditional Knowledge of Medicinal Plants. In: Chong, P., Newman, D., Steinmacher, D. (eds) Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery. Springer, Cham. https://doi.org/10.1007/978-3-030-51358-0_17

Download citation

Publish with us

Policies and ethics