Skip to main content

Parkinson’s Disease: Deep Brain Stimulation

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery

Abstract

Deep brain stimulation (DBS) is the gold standard therapy for Parkinson’s disease when medications no longer provide adequate and consistent benefit with respect to motor symptoms. In conjunction with ever-accumulating evidence for the safety, clinical effectiveness, and cost-effectiveness of DBS, our understanding of the neurophysiology of surgical targets has evolved substantially over the last two decades. This chapter focuses significant attention on these details, as they provide the foundation for understanding both how to target DBS leads in the absence of neurophysiological guidance and how the use of neurophysiological signals may evolve in the future, intraoperatively and in chronically implanted devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 129.00
Price excludes VAT (USA)
Softcover Book
USD 169.99
Price excludes VAT (USA)
Hardcover Book
USD 249.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benabid A, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–6.

    CAS  PubMed  Google Scholar 

  2. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Bas LJ, Broussolle E, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet (London, England). 1995;345:91–5.

    Article  CAS  Google Scholar 

  3. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang L-LL, Liu J-LL FX-LL, Xian W-BB GJ, Liu Y-MM, et al. Long-term efficacy of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a 5-year follow-up study in China. Chin Med J. 2015;128:2433–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Merola A, Romagnolo A, Bernardini A, Rizzi L, Artusi CA, Lanotte M, et al. Earlier versus later subthalamic deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:972–5.

    Article  PubMed  Google Scholar 

  6. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Oroz M, Obeso J, Lang A, Houeto J-LL, Pollak P, Rehncrona S, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain J Neurol. 2005;128:2240–9.

    Article  CAS  Google Scholar 

  8. Lilleeng B, Gjerstad M, Baardsen R, Dalen I, Larsen J. The long-term development of non-motor problems after STN-DBS. Acta Neurol Scand. 2015;132:251–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zibetti M, Merola A, Rizzi L, Ricchi V, Angrisano S, Azzaro C, et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord. 2011;26:2327–34.

    Article  PubMed  Google Scholar 

  10. Lin HY, Hasegawa H, Mundil N, Samuel M, Ashkan K. Patients’ expectations and satisfaction in subthalamic nucleus deep brain stimulation for Parkinson disease: 6-year follow-up. World Neurosurg. 2019;121:e654–60.

    Article  PubMed  Google Scholar 

  11. Castrioto A, Lozano AM, Poon Y-YY, Lang AE, Fallis M, Moro E. Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol. 2011;68:1550–6.

    Article  PubMed  Google Scholar 

  12. Henriksen BM, Johnsen E, Sunde N, Vase A, Gjelstrup M, Østergaard K. Surviving 10 years with deep brain stimulation for Parkinson’s disease – a follow-up of 79 patients. Eur J Neurol. 2016;23:53–61.

    Article  Google Scholar 

  13. Janssen ML, Duits AA, Turaihi AH, Ackermans L, Leentjens AF, Leentjes AF, et al. Subthalamic nucleus high-frequency stimulation for advanced Parkinson’s disease: motor and neuropsychological outcome after 10 years. Stereotact Funct Neurosurg. 2014;92:381–7.

    Article  PubMed  Google Scholar 

  14. Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol. 2019;15:234–42.

    Article  PubMed  Google Scholar 

  15. Volkmann J, Albanese A, Kulisevsky J, Tornqvist A-LL, Houeto J-LL, Pidoux B, et al. Long-term effects of pallidal or subthalamic deep brain stimulation on quality of life in Parkinson’s disease. Mov Disord. 2009;24:1154–61.

    Article  PubMed  Google Scholar 

  16. Moro E, Lozano AM, Pollak P, Agid Y, Rehncrona S, Volkmann J, et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord. 2010;25:578–86.

    Article  PubMed  Google Scholar 

  17. Defer G, Widner H, Marié R, Rémy P, Levivier M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord. 1999;14:572–84.

    Article  CAS  PubMed  Google Scholar 

  18. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21(Suppl 14):S290–304.

    Article  PubMed  Google Scholar 

  19. Galati S, Stefani A. Deep brain stimulation of the subthalamic nucleus: all that glitters isn’t gold? Mov Disord. 2015;30:632–7.

    Article  PubMed  Google Scholar 

  20. deSouza R, Akram H, Low H, Green A, Ashkan K, Schapira A. The timing of deep brain stimulation for Parkinson disease in the UK from 1997 to 2012. Eur J Neurol. 2015;22:1415–7.

    Article  CAS  PubMed  Google Scholar 

  21. DeLong MR, Huang KT, Gallis J, Lokhnygina Y, Parente B, Hickey P, et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease. JAMA Neurol. 2014;71:1290–5.

    Article  PubMed  Google Scholar 

  22. Shalash A, Alexoudi A, Knudsen K, Volkmann J, Mehdorn M, Deuschl G. The impact of age and disease duration on the long term outcome of neurostimulation of the subthalamic nucleus. Parkinsonism Relat Disord. 2014;20:47–52.

    Article  PubMed  Google Scholar 

  23. Schuepbach WMM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013;368:610–22.

    Article  CAS  PubMed  Google Scholar 

  24. Charles D, Konrad PE, Neimat JS, Molinari AL, Tramontana MG, Finder SG, et al. Subthalamic nucleus deep brain stimulation in early stage Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:731–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spieles-Engemann AL, Steece-Collier K, Behbehani MM, Collier TJ, Wohlgenant SL, Kemp CJ, et al. Subthalamic nucleus stimulation increases brain derived neurotrophic factor in the nigrostriatal system and primary motor cortex. J Park Dis. 2011;1:123–36.

    CAS  Google Scholar 

  26. Fischer D, Kemp CJ, Cole-Strauss A, Polinski NK, Paumier KL, Lipton JW, et al. Subthalamic nucleus deep brain stimulation employs trkB signaling for neuroprotection and functional restoration. J Neurosci Off J Soc Neurosci. 2017;37:6786–96.

    Article  CAS  Google Scholar 

  27. Kim SJ, Udupa K, Ni Z, Moro E, Gunraj C, Mazzella F, et al. Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease. Neurology. 2015;85:425–32.

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alhourani A, Well MM, Randazzo MJ, Wozny TA, Kondylis ED, Lipski WJ, et al. Network effects of deep brain stimulation. J Neurophysiol. 2015;114:2105–17.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vasques X, Cif L, Hess O, Gavarini S, Mennessier G, Coubes P. Prognostic value of globus pallidus internus volume in primary dystonia treated by deep brain stimulation. J Neurosurg. 2009;110:220–8.

    Article  PubMed  Google Scholar 

  31. Ngoga D, Mitchell R, Kausar J, Hodson J, Harries A, Pall H. Deep brain stimulation improves survival in severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2014;85:17–22.

    Article  PubMed  Google Scholar 

  32. Eggington S, Brandt A, Rasmussen RE, Grifi M, Nyberg J. Cost-effectiveness of deep brain stimulation (Dbs) in the management of advanced Parkinson’s disease: a Swedish Payer Perspective. Value Health. 2015;18:A352.

    Article  Google Scholar 

  33. Eggington S, Valldeoriola F, Chaudhuri K, Ashkan K, Annoni E, Deuschl G. The cost-effectiveness of deep brain stimulation in combination with best medical therapy, versus best medical therapy alone, in advanced Parkinson’s disease. J Neurol. 2014;261:106–16.

    Article  PubMed  Google Scholar 

  34. Dams J, Balzer-Geldsetzer M, Siebert U, Deuschl G, Uepbach W, Krack P, et al. Cost-effectiveness of neurostimulation in Parkinson’s disease with early motor complications. Mov Disord. 2016;31:1183–91.

    Article  PubMed  Google Scholar 

  35. Liu Y, Li W, Tan C, Liu X, Wang X, Gui Y, et al. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease. J Neurosurg. 2014;121:709–18.

    Article  PubMed  Google Scholar 

  36. Peng L, Fu J, Ming Y, Zeng S, He H, Chen L. The long-term efficacy of STN vs GPi deep brain stimulation for Parkinson disease: a meta-analysis. Medicine. 2018;97:e12153.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mansouri A, Taslimi S, Badhiwala JH, Witiw CD, Nassiri F, Odekerken VJ, et al. Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg. 2018;128:1199–213.

    Article  PubMed  Google Scholar 

  38. Rodriguez-Oroz MC, Moro E, Krack P. Long-term outcomes of surgical therapies for Parkinson’s disease. Mov Disord. 2012;27:1718–28.

    Article  PubMed  Google Scholar 

  39. Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.

    Article  PubMed  Google Scholar 

  40. Odekerken VJ, Boel JA, Schmand BA, de Haan RJ, Figee M, van den Munckhof P, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology. 2016;86:755–61.

    Article  CAS  PubMed  Google Scholar 

  41. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D, Bova F, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol. 2009;65:586–95.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schüpbach M, et al. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain J Neurol. 2008;131:2720–8.

    Article  Google Scholar 

  43. Weintraub D, Duda JE, Carlson K, Luo P, Sagher O, Stern M, et al. Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2013;84:1113–8.

    Article  PubMed  Google Scholar 

  44. Lhommée E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, et al. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain J Neurol. 2012;135:1463–77.

    Article  Google Scholar 

  45. Israel Z, Burchiel KJ. Microelectrode recording in movement disorders surgery. New York: Thieme; 2004.

    Book  Google Scholar 

  46. Brahimaj B, Kochanski RB, Sani S. Microelectrode accuracy in deep brain stimulation surgery. J Clin Neurosci. 2018;50:58–61.

    Article  PubMed  Google Scholar 

  47. Reck C, Maarouf M, Wojtecki L, Groiss SJ, Florin E, Sturm V, et al. Clinical outcome of subthalamic stimulation in Parkinson’s disease is improved by intraoperative multiple trajectories microelectrode recording. J Neurol Surg A Cent Eur Neurosurg. 2012;73:377–86.

    Article  PubMed  Google Scholar 

  48. Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, et al. Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Neurosurgery. 2007;61:346–55; discussion 355–7.

    PubMed  Google Scholar 

  49. Bjerknes S, Toft M, Konglund AE, Pham U, Waage TR, Pedersen L, et al. Multiple microelectrode recordings in STN-DBS surgery for Parkinson’s disease: a randomized study. Mov Disord Clin Pract. 2018;5:296–305.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bour LJ, Contarino M, Foncke EM, de Bie RM, van den Munckhof P, Speelman JD, et al. Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir. 2010;152:2069–77.

    Article  PubMed  Google Scholar 

  51. Lozano CS, Ranjan M, Boutet A, Xu DS, Kucharczyk W, Fasano A, et al. Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson’s disease. J Neurosurg. 2018:1–6.

    Google Scholar 

  52. Shenai MB, Patel DM, Romeo A, Whisenhunt J, Walker HC, Guthrie S, et al. The relationship of electrophysiologic subthalamic nucleus length as a predictor of outcomes in deep brain stimulation for Parkinson disease. Stereotact Funct Neurosurg. 2017;95:341–7.

    Article  PubMed  Google Scholar 

  53. Boëx C, Tyrand R, Horvath J, Fleury V, Sadri S, Corniola M, et al. What is the best electrophysiologic marker of the outcome of subthalamic nucleus stimulation in Parkinson disease? World Neurosurg. 2018;120:e1217–24.

    Article  PubMed  Google Scholar 

  54. Hamel W, Köppen JA, Alesch F, Antonini A, Barcia JA, Bergman H, et al. Targeting of the subthalamic nucleus for deep brain stimulation: a survey among Parkinson disease specialists. World Neurosurg. 2017;99:41–6.

    Article  PubMed  Google Scholar 

  55. Garcia-Garcia D, Guridi J, Toledo JB, Alegre M, Obeso JA, Rodríguez-Oroz MC. Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson’s disease: a new approach for active contact localization. J Neurosurg. 2016;125:1068–79.

    Article  PubMed  Google Scholar 

  56. Bot M, Schuurman P, Odekerken VJ, Verhagen R, Contarino FM, Bie RM, et al. Deep brain stimulation for Parkinson’s disease: defining the optimal location within the subthalamic nucleus. J Neurol Neurosurg Psychiatry. 2018;89:493–8.

    Article  PubMed  Google Scholar 

  57. Hutchison W, Allan R, Opitz H, Levy R, Dostrovsky J, Lang A, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol. 1998;44:622–8.

    Article  CAS  PubMed  Google Scholar 

  58. Seifried C, Weise L, Hartmann R, Gasser T, Baudrexel S, Szelényi A, et al. Intraoperative microelectrode recording for the delineation of subthalamic nucleus topography in Parkinson’s disease. Brain Stimul. 2012;5:378–87.

    Article  PubMed  Google Scholar 

  59. Lourens M, Meijer H, Contarino M, van den Munckhof P, Schuurman P, van Gils S, et al. Functional neuronal activity and connectivity within the subthalamic nucleus in Parkinson’s disease. Clin Neurophysiol. 2013;124:967–81.

    Article  CAS  PubMed  Google Scholar 

  60. Steigerwald F, Pötter M, Herzog J, Pinsker M, Kopper F, Mehdorn H, et al. Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. J Neurophysiol. 2008;100:2515–24.

    Article  CAS  PubMed  Google Scholar 

  61. Deffains M, Holland P, Moshel S, de Noriega F, Bergman H, Israel Z. Higher neuronal discharge rate in the motor area of the subthalamic nucleus of Parkinsonian patients. J Neurophysiol. 2014;112:1409–20.

    Article  PubMed  Google Scholar 

  62. Pozzi NG, Arnulfo G, Canessa A, Steigerwald F, Nickl R, Homola GA, et al. Distinctive neuronal firing patterns in subterritories of the subthalamic nucleus. Clin Neurophysiol. 2016;127:3387–93.

    Article  PubMed  Google Scholar 

  63. Guo S, Zhuang P, Zheng Z, Zhang Y, Li J, Li Y. Neuronal firing patterns in the subthalamic nucleus in patients with akinetic-rigid-type Parkinson’s disease. J Clin Neurosci. 2012;19:1404–7.

    Article  PubMed  Google Scholar 

  64. Guo S, Zhuang P, Hallett M, Zheng Z, Zhang Y, Li J, et al. Subthalamic deep brain stimulation for Parkinson’s disease: correlation between locations of oscillatory activity and optimal site of stimulation. Parkinsonism Relat Disord. 2013;19:109–14.

    Article  PubMed  Google Scholar 

  65. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Lazzaro DV. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci Off J Soc Neurosci. 2001;21:1033–8.

    Article  CAS  Google Scholar 

  66. Giannicola G, Marceglia S, Rossi L, Mrakic-Sposta S, Rampini P, Tamma F, et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp Neurol. 2010;226:120–7.

    Article  CAS  PubMed  Google Scholar 

  67. Eusebio A, Thevathasan W, Gaynor DL, Pogosyan A, Bye E, Foltynie T, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82:569.

    Article  CAS  PubMed  Google Scholar 

  68. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain J Neurol. 2002;125:1196–209.

    Article  Google Scholar 

  69. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Lazzaro V, et al. Movement-related changes in synchronization in the human basal ganglia. Brain J Neurol. 2002;125:1235–46.

    Article  Google Scholar 

  70. Tan H, Pogosyan A, Anzak A, Foltynie T, Limousin P, Zrinzo L, et al. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson’s disease. Exp Neurol. 2013;240:122–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Quinn EJ, Blumenfeld Z, Velisar A, Koop MM, Shreve LA, Trager MH, et al. Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Mov Disord. 2015;30:1750–8.

    Article  PubMed  Google Scholar 

  72. Neumann W-JJ, Degen K, Schneider G-HH, Brücke C, Huebl J, Brown P, et al. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson’s disease. Mov Disord. 2016;31:1748–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neumann W-JJ, Kühn AA. Subthalamic beta power-Unified Parkinson’s disease rating scale III correlations require akinetic symptoms. Mov Disord. 2017;32:175–6.

    Article  PubMed  Google Scholar 

  74. Beudel M, Oswal A, Jha A, Foltynie T, Zrinzo L, Hariz M, et al. Oscillatory beta power correlates with akinesia-rigidity in the parkinsonian subthalamic nucleus. Mov Disord. 2017;32:174–5.

    Article  PubMed  Google Scholar 

  75. Geng X, Xu X, Horn A, Li N, Ling Z, Brown P, et al. Intra-operative characterisation of subthalamic oscillations in Parkinson’s disease. Clin Neurophysiol. 2018;129(5):1001–10.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Alegre M, López-Azcárate J, Alonso-Frech F, Rodríguez-Oroz MC, Valencia M, Guridi J, et al. Subthalamic activity during diphasic dyskinesias in Parkinson’s disease. Mov Disord. 2012;27:1178–81.

    Article  PubMed  Google Scholar 

  77. Hirschmann J, Butz M, Hartmann CJ, Hoogenboom N, Özkurt TE, Vesper J, et al. Parkinsonian rest tremor is associated with modulations of subthalamic high-frequency oscillations. Mov Disord. 2016;31:1551–9.

    Article  CAS  PubMed  Google Scholar 

  78. Lofredi R, Neumann W-JJ, Bock A, Horn A, Huebl J, Siegert S, et al. Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease. elife. 2018;7.

    Google Scholar 

  79. Kühn AA, Trottenberg T, Kivi A, Kupsch A, Schneider G-HH, Brown P. The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp Neurol. 2005;194:212–20.

    Article  PubMed  Google Scholar 

  80. Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96:3248–56.

    Article  PubMed  Google Scholar 

  81. Moran A, Bergman H, Israel Z, Bar-Gad I. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain. 2008;131:3395–409.

    Article  CAS  PubMed  Google Scholar 

  82. Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z. Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain J Neurol. 2010;133:2007–21.

    Article  Google Scholar 

  83. Verhagen R, Zwartjes DG, Heida T, Wiegers EC, Contarino M, de Bie RM, et al. Advanced target identification in STN-DBS with beta power of combined local field potentials and spiking activity. J Neurosci Methods. 2015;253:116–25.

    Article  PubMed  Google Scholar 

  84. Telkes I, Ince N, Onaran I, Abosch A. Spatio-spectral characterization of local field potentials in the subthalamic nucleus via multitrack microelectrode recordings. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2015;2015:5561–4.

    Google Scholar 

  85. Kostoglou K, Michmizos KP, Stathis P, Sakas D, Nikita KS, Mitsis GD. Classification and prediction of clinical improvement in deep brain stimulation from intraoperative microelectrode recordings. IEEE Trans Biomed Eng. 2017;64:1123–30.

    Article  PubMed  Google Scholar 

  86. Wan KR, Maszczyk T, See AA, Dauwels J, King NK. A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease. Clin Neurophysiol. 2019;130:145–54.

    Article  PubMed  Google Scholar 

  87. Nambu A, Takada M, Inase M, Tokuno H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci Off J Soc Neurosci. 1996;16:2671–83.

    Article  CAS  Google Scholar 

  88. Miocinovic S, de Hemptinne C, Chen W, Isbaine F, Willie JT, Ostrem JL, et al. Cortical potentials evoked by subthalamic stimulation demonstrate a short latency hyperdirect pathway in humans. J Neurosci Off J Soc Neurosci. 2018;38:9129.

    Article  CAS  Google Scholar 

  89. Whitmer D, de Solages C, Hill B, Yu H, Henderson JM, Bronte-Stewart H. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci. 2012;6:155.

    Article  PubMed  PubMed Central  Google Scholar 

  90. McCairn KW, Turner RS. Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations. J Neurophysiol. 2009;101:1941–60.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Johnson LA, Xu W, Baker KB, Zhang J, Vitek JL. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate. J Neurophysiol. 2015;113:2549–54.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang AI, Vanegas N, Lungu C, Zaghloul KA. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson’s disease. J Neurosci Off J Soc Neurosci. 2014;34:12816–27.

    Article  CAS  Google Scholar 

  93. Wang DD, de Hemptinne C, Miocinovic S, Qasim SE, Miller AM, Ostrem JL, et al. Subthalamic local field potentials in Parkinson’s disease and isolated dystonia: an evaluation of potential biomarkers. Neurobiol Dis. 2016;89:213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:4780–5.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kondylis ED, Randazzo MJ, Alhourani A, Lipski WJ, Wozny TA, Pandya Y, et al. Movement-related dynamics of cortical oscillations in Parkinson’s disease and essential tremor. Brain J Neurol. 2016;139:2211–23.

    Article  Google Scholar 

  96. Lipski WJ, Wozny TA, Alhourani A, Kondylis ED, Turner RS, Crammond DJ, et al. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement. J Neurophysiol. 2017;118:1472–87.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rafferty MR, Prodoehl J, Robichaud JA, David FJ, Poon C, Goelz LC, et al. Effects of 2 years of exercise on gait impairment in people with Parkinson disease: the PRET-PD randomized trial. J Neurol Phys Ther. 2017;41:21–30.

    Article  PubMed  PubMed Central  Google Scholar 

  98. DeLong M, Crutcher MD, Georgopoulos A. Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol. 1985;53:530–43.

    Article  CAS  PubMed  Google Scholar 

  99. Bergman H, Wichmann T, Karmon B, MR DL. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72(2):507–20.

    Article  CAS  PubMed  Google Scholar 

  100. Vitek J, Bakay R, Hashimoto T, Kaneoke Y, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg. 1998;88(6):1027–43.

    Article  CAS  PubMed  Google Scholar 

  101. Vayssiere N, van der Gaag N, Cif L, Hemm S, et al. Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. J Neurosurg. 2004;101(2):181–8.

    Article  PubMed  Google Scholar 

  102. Chang EF, Turner RS, Ostrem JL, Davis VR, Starr PA. Neuronal responses to passive movement in the globus pallidus internus in primary dystonia. J Neurophysiol. 2007;98:3696–707.

    Article  PubMed  Google Scholar 

  103. Baker KB, Lee JY, Mavinkurve G, Russo GS, Walter B, DeLong MR, et al. Somatotopic organization in the internal segment of the globus pallidus in Parkinson’s disease. Exp Neurol. 2010;222:219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ostrem JL, Starr PA. Treatment of dystonia with deep brain stimulation. Neurotherapeutics. 2008;5:320–30.

    Article  PubMed  PubMed Central  Google Scholar 

  105. McClelland V, Valentin A, Rey H, Lumsden D, Elze M, Selway R, et al. Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children with dystonia. J Neurol Neurosurg Psychiatry. 2016;87:958–67.

    Article  CAS  PubMed  Google Scholar 

  106. Harries AM, Kausar J, Roberts SA, Mocroft A, Hodson JA, Pall HS, et al. Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg. 2012;116:107–13.

    Article  PubMed  Google Scholar 

  107. Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119:301–6.

    Article  PubMed  Google Scholar 

  108. Aviles-Olmos I, Kefalopoulou Z, Tripoliti E, Candelario J, Akram H, Martinez-Torres I, et al. Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. 2014;85:1419–25.

    Article  PubMed  Google Scholar 

  109. Larson PS, Starr PA, Bates G, Tansey L, Richardson R, Martin AJ. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery. 2012;70:95–103. discussion 103

    Article  PubMed  Google Scholar 

  110. Larson PS, Starr PA, Martin AJ. Deep brain stimulation: interventional and intraoperative MRI approaches. Prog Neurol Surg. 2018;33:187–97.

    Article  PubMed  Google Scholar 

  111. Lee PS, Richardson RM. Interventional MRI–guided deep brain stimulation lead implantation. Neurosurg Clin N Am [Internet]. 2017;28:535–44. Available from: http://www.sciencedirect.com/science/article/pii/S1042368017300657.

    Article  Google Scholar 

  112. Richardson RM, Golby AJ. Chapter 13: Functional neurosurgery: deep brain stimulation and gene therapy. In: Image guided neurosurgery [Internet]. Cambridge, Massachusetts, USA: Academic Press; 2015. p. 297–323. Available from: https://www.sciencedirect.com/science/article/pii/B9780128008706000133.

  113. Lee PS, Weiner GM, Corson D, Kappel J, Chang Y-FF, Suski VR, et al. Outcomes of interventional-MRI versus microelectrode recording-guided subthalamic deep brain stimulation. Front Neurol. 2018;9:241.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ostrem JL, Ziman N, Galifianakis NB, Starr PA, Luciano MS, Katz M, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg. 2016;124:908–16.

    Article  PubMed  Google Scholar 

  115. Ostrem JL, Galifianakis NB, Markun LC, Grace JK, Martin AJ, Starr PA, et al. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin Neurol Neurosurg. 2013;115:708–12.

    Article  PubMed  Google Scholar 

  116. Sidiropoulos C, Rammo R, Merker B, Mahajan A, LeWitt P, Kaminski P, et al. Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. J Neurol. 2016;263:1226–31.

    Article  PubMed  Google Scholar 

  117. Conway ZJ, Silburn PA, Thevathasan W, Maley KO, Naughton GA, Cole MH. Alternate subthalamic nucleus deep brain stimulation parameters to manage motor symptoms of Parkinson’s disease: systematic review and meta-analysis. Mov Disord Clin Pract. 2019;6:17–26.

    Article  PubMed  Google Scholar 

  118. Brocker DT, Swan BD, Turner DA, Gross RE, Tatter SB, Koop MM, et al. Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Exp Neurol. 2013;239:60–7.

    Article  PubMed  Google Scholar 

  119. Tass PA, Qin L, Hauptmann C, Dovero S, Bezard E, Boraud T, et al. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann Neurol. 2012;72:816–20.

    Article  PubMed  Google Scholar 

  120. Adamchic I, Hauptmann C, Barnikol UB, Pawelczyk N, Popovych O, Barnikol TT, et al. Coordinated reset neuromodulation for Parkinson’s disease: proof-of-concept study. Mov Disord. 2014;29:1679–84.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dembek TA, Reker P, Visser-Vandewalle V, Wirths J, Treuer H, Klehr M, et al. Directional DBS increases side-effect thresholds-A prospective, double-blind trial. Mov Disord. 2017;32:1380–8.

    Article  PubMed  Google Scholar 

  122. Tinkhauser G, Pogosyan A, Debove I, Nowacki A, Shah S, Seidel K, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord. 2018;33(1):159–64.

    Article  PubMed  Google Scholar 

  123. Bour L, Lourens M, Verhagen R, de Bie R, van den Munckhof P, Schuurman P, et al. Directional recording of subthalamic spectral power densities in Parkinson’s disease and the effect of steering deep brain stimulation. Brain Stimul. 2015;8:730–41.

    Article  CAS  PubMed  Google Scholar 

  124. Velisar A, Syrkin-Nikolau J, Blumenfeld Z, Trager MH, Afzal MF, Prabhakar V, et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimul. 2019;12(4):868–76.

    Article  CAS  PubMed  Google Scholar 

  125. Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, et al. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease. Neurology. 2018;90:e971–6.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Habets JG, Heijmans M, Kuijf ML, Janssen ML, Temel Y, Kubben PL. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov Disord. 2018;33:1834–43.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Neumann W-JJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson R. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019;16:105–18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mark Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crammond, D.J., Richardson, R.M. (2020). Parkinson’s Disease: Deep Brain Stimulation. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics