Skip to main content

The Role of B Cells in Multiple Sclerosis

  • Chapter
  • First Online:
Multiple Sclerosis Immunology

Abstract

B cells may have various roles in the pathogenesis of multiple sclerosis (MS), serving as a source of plasma cells that secrete autoreactive specific antibodies, but also as antigen-presenting cells for activation of encephalitogenic T cells. Data indicate that antibodies promote demyelination in MS and experimental autoimmune encephalomyelitis (EAE), the animal model of MS, while the role of B cells themselves in central nervous system (CNS) autoimmune disease is less clear. Like dendritic cells, B cells are professional antigen-presenting cells as defined by a constitutive expression of major histocompatibility complex (MHC) class II and an antigen-specific B cell receptor (BCR, membrane-associated Immunoglobulin (Ig)). Compared to other antigen-presenting cell populations, antigen-specific B cells are very competent in presentation of protein antigen when their BCR recognizes the same antigen as the responding T cells. As processing and presentation of CNS protein antigen is required for initiation of CNS autoimmune disease (Slavin et al. 2001), B cells and, in particular, B cells specific for CNS autoantigen may have an important role as antigen-presenting cells for the activation of myelin-specific T cells in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 89.00
Price excludes VAT (USA)
Softcover Book
USD 119.99
Price excludes VAT (USA)
Hardcover Book
USD 169.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ascherio A, Munger KL (2010) Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol 5(3):271–277

    Article  PubMed  Google Scholar 

  • Avasarala JR, Cross AH, Trotter JL (2001) Oligoclonal band number as a marker for prognosis in multiple sclerosis. Arch Neurol 58(12):2044–2045

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or A et al (2010) Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 67(4):452–461

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE et al (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163(9):5133–5144

    PubMed  CAS  Google Scholar 

  • Bennett JL et al (2008) CSF IgG heavy-chain bias in patients at the time of a clinically isolated syndrome. J Neuroimmunol 199(1–2):126–132

    Article  PubMed  CAS  Google Scholar 

  • Bennett JL et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66(5):617–629

    Article  PubMed  CAS  Google Scholar 

  • Berger T et al (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E et al (2006) Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest 116(9):2393–2402

    Article  PubMed  CAS  Google Scholar 

  • Bourquin C et al (2003) Selective unresponsiveness to conformational B cell epitopes of the myelin oligodendrocyte glycoprotein in H-2b mice. J Immunol 171(1):455–461

    PubMed  CAS  Google Scholar 

  • Bradl M et al (2009) Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 66(5):630–643

    Article  PubMed  CAS  Google Scholar 

  • Breij EC et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63(1):16–25

    Article  PubMed  CAS  Google Scholar 

  • Brilot F et al (2009) Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Ann Neurol 66(6):833–842

    Article  PubMed  CAS  Google Scholar 

  • Burgoon MP et al (2009) Varicella zoster virus is not a disease-relevant antigen in multiple sclerosis. Ann Neurol 65(4):474–479

    Article  PubMed  CAS  Google Scholar 

  • Brettschneider J, Czerwoniak A, Senel M, Fang L, Kassubek J, Pinkhardt E, Lauda F, Kapfer T, Jesse S, Lehmensiek V, Ludolph AC, Otto M, Tumani H (2010) The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS). PLoS One 5(8):e11986. doi:10.1371/journal.pone.0011986

    Google Scholar 

  • Cameron EM et al (2009) Potential of a unique antibody gene signature to predict conversion to clinically definite multiple sclerosis. J Neuroimmunol 213(1–2):123–130

    Article  PubMed  CAS  Google Scholar 

  • Cepok S et al (2001) Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. Brain 124(Pt 11):2169–2176

    Article  PubMed  CAS  Google Scholar 

  • Cepok S et al (2003) The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol 60(6):849–855

    Article  PubMed  Google Scholar 

  • Cepok S et al (2005a) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128(Pt 7):1667–1676

    Article  Google Scholar 

  • Cepok S et al (2005b) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115(5):1352–1360

    CAS  Google Scholar 

  • Cepok S et al (2006) Accumulation of class switched IgD-IgM- memory B cells in the cerebrospinal fluid during neuro-inflammation. J Neuroimmunol 180(1–2):33–39

    Article  PubMed  CAS  Google Scholar 

  • Colombo M et al (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol 164(5):2782–2789

    PubMed  CAS  Google Scholar 

  • Colombo M et al (2003) Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur J Immunol 33(12):3433–3438

    Article  PubMed  CAS  Google Scholar 

  • Constant S et al (1995a) Peptide and protein antigens require distinct antigen-presenting cell subsets for the priming of CD4+ T cells. J Immunol 154(10):4915–4923

    CAS  Google Scholar 

  • Constant S et al (1995b) B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol 155(8):3734–3741

    CAS  Google Scholar 

  • Cortese I et al (1996) Identification of peptides specific for cerebrospinal fluid antibodies in multiple sclerosis by using phage libraries. Proc Natl Acad Sci U S A 93(20):11063–11067

    Article  PubMed  CAS  Google Scholar 

  • Cree BA, Goodin DS, Hauser SL (2002) Neuromyelitis optica. Semin Neurol 22(2):105–122

    Article  PubMed  Google Scholar 

  • Farrell MA et al (1985) Oligoclonal bands in multiple sclerosis: clinical-pathologic correlation. Neurology 35(2):212–218

    Article  PubMed  CAS  Google Scholar 

  • Genain CP et al (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5(2):170–175

    Article  PubMed  CAS  Google Scholar 

  • Haubold K et al (2004) B-lymphocyte and plasma cell clonal expansion in monosymptomatic optic neuritis cerebrospinal fluid. Ann Neurol 56(1):97–107

    Article  PubMed  CAS  Google Scholar 

  • Hauser SL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688

    Article  PubMed  CAS  Google Scholar 

  • Hawker K et al (2009) Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 66(4):460–471

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo G et al (2002) Intrathecal IgG synthesis: marker of progression in multiple sclerosis patients. Acta Neurol Scand 105(3):158–163

    Article  PubMed  CAS  Google Scholar 

  • Jarius S et al (2008) Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131(Pt 11):3072–3080

    Article  PubMed  CAS  Google Scholar 

  • Kabat EA, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest 21(5):571–577

    Article  PubMed  CAS  Google Scholar 

  • Kappos L, O’Connor P, Bar-Or A, Li D, Barkhof F, Yin M, Glanzman R, Tinbergen J, Hauser S (2010) Efficacy and safety of ocrelizumab in patients with relapsing-remitting multiple sclerosis: results of a phase II randomised placebo-controlled multicentre trial. Presented at the Congress of the European Committee for Treatment and Research in Multiple Sclerosis

    Google Scholar 

  • Karni A et al (1999) Elevated levels of antibody to myelin oligodendrocyte glycoprotein is not specific for patients with multiple sclerosis. Arch Neurol 56(3):311–315

    Article  PubMed  CAS  Google Scholar 

  • Koch M et al (2007) Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis. Eur J Neurol 14(7):797–800

    Article  PubMed  CAS  Google Scholar 

  • Kowarik MC et al (2012) CXCL13 is the major determinant for B cell recruitment to the CSF during neuro-inflammation. J Neuroinflammation 16(9):93

    Article  Google Scholar 

  • Krishnamoorthy G et al (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116(9):2385–2392

    Article  PubMed  CAS  Google Scholar 

  • Krumbholz M et al (2006) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129(Pt 1):200–211

    Article  PubMed  Google Scholar 

  • Kuhle J et al (2007) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356(4):371–378

    Article  PubMed  CAS  Google Scholar 

  • Lalive PH et al (2006) Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci U S A 103(7):2280–2285

    Article  PubMed  CAS  Google Scholar 

  • Lampasona V et al (2004) Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 62(11):2092–2094

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7(3):115–121

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM, NeuroproMiSe EBV Working Group (2011) Epstein-Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain 134(Pt 9):2772–2286

    Google Scholar 

  • Lennon VA et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202(4):473–477

    Article  PubMed  CAS  Google Scholar 

  • Litzenburger T et al (1998) B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J Exp Med 188(1):169–180

    Article  PubMed  CAS  Google Scholar 

  • Lovato L et al (2011) Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain 134(Pt 2):534–541

    Article  PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Google Scholar 

  • Lucchinetti C et al (2011) Inflammatory cortical Demyelination in early multiple sclerosis. N Engl J Med 365(23):2188–2197

    Article  PubMed  CAS  Google Scholar 

  • Lyons JA et al (1999) B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 29(11):3432–3439

    Article  PubMed  CAS  Google Scholar 

  • Lyons JA, Ramsbottom MJ, Cross AH (2002) Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol 32(7):1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Magliozzi R et al (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148(1–2):11–23

    Article  PubMed  CAS  Google Scholar 

  • Magliozzi R et al (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130(Pt 4):1089–1104

    Article  PubMed  Google Scholar 

  • Mandler RN et al (1993) Devic’s neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol 34(2):162–168

    Article  PubMed  CAS  Google Scholar 

  • Marta CB et al (2005) Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A 102(39):13992–13997

    Article  PubMed  CAS  Google Scholar 

  • Martin R et al (1988) Persistent intrathecal secretion of oligoclonal, Borrelia burgdorferi-specific IgG in chronic meningoradiculomyelitis. J Neurol 235(4):229–233

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin KA et al (2009) Age-dependent B cell autoimmunity to a myelin surface antigen in pediatric multiple sclerosis. J Immunol 183(6):4067–4076

    Article  PubMed  CAS  Google Scholar 

  • Merkler D et al (2006) Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the common marmoset reflects the immunopathology of pattern II multiple sclerosis lesions. Mult Scler 12(4):369–374

    Article  PubMed  CAS  Google Scholar 

  • O’Connor KC et al (2005) Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J Immunol 175(3):1974–1982

    PubMed  Google Scholar 

  • O’Connor KC et al (2007) Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein. Nat Med 13(2):211–217

    Article  PubMed  Google Scholar 

  • Obermeier B et al (2008) Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med 14(6):688–693

    Article  PubMed  CAS  Google Scholar 

  • Oliver AR, Lyon GM, Ruddle NH (2003) Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J Immunol 171(1):462–468

    PubMed  CAS  Google Scholar 

  • Owens GP et al (1998) Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann Neurol 43(2):236–243

    Article  PubMed  CAS  Google Scholar 

  • Owens GP et al (2001) The immunoglobulin G heavy chain repertoire in multiple sclerosis plaques is distinct from the heavy chain repertoire in peripheral blood lymphocytes. Clin Immunol 98(2):258–263

    Article  PubMed  CAS  Google Scholar 

  • Owens GP et al (2003) Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal fluid. J Immunol 171(5):2725–2733

    PubMed  CAS  Google Scholar 

  • Owens GP et al (2007) VH4 gene segments dominate the intrathecal humoral immune response in multiple sclerosis. J Immunol 179(9):6343–6351

    PubMed  CAS  Google Scholar 

  • Owens GP et al (2009) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol 65(6):639–649

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K et al (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117(Pt 6):1311–1322

    Article  PubMed  Google Scholar 

  • Paul F et al (2007) Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med 4(4):e133

    Article  PubMed  Google Scholar 

  • Pollinger B et al (2009) Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J Exp Med 206(6):1303–1316

    Article  PubMed  Google Scholar 

  • Prineas JW, Connell F (1978) The fine structure of chronically active multiple sclerosis plaques. Neurology 28(9 Pt 2):68–75

    Article  PubMed  CAS  Google Scholar 

  • Prineas JW, Graham JS (1981) Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 10(2):149–158

    Article  PubMed  CAS  Google Scholar 

  • Prineas JW et al (1984) Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann N Y Acad Sci 436:11–32

    Article  PubMed  CAS  Google Scholar 

  • Rand KH et al (1998) Molecular approach to find target(s) for oligoclonal bands in multiple sclerosis. J Neurol Neurosurg Psychiatry 65(1):48–55

    Article  PubMed  CAS  Google Scholar 

  • Rauer S et al (2006) Antimyelin antibodies and the risk of relapse in patients with a primary demyelinating event. J Neurol Neurosurg Psychiatry 77(6):739–742

    Article  PubMed  CAS  Google Scholar 

  • Reindl M et al (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122(Pt 11):2047–2056

    Article  PubMed  Google Scholar 

  • Schluesener HJ et al (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 139(12):4016–4021

    PubMed  CAS  Google Scholar 

  • Schmidt S et al (2001) Serum autoantibody responses to myelin oligodendrocyte glycoprotein and myelin basic protein in X-linked adrenoleukodystrophy and multiple sclerosis. J Neuroimmunol 119(1):88–94

    Article  PubMed  CAS  Google Scholar 

  • Selter RC et al (2010) Antibody responses to EBV and native MOG in pediatric inflammatory demyelinating CNS diseases. Neurology 74(21):1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Serafini B et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14(2):164–174

    Article  PubMed  Google Scholar 

  • Slavin AJ et al (2001) Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. J Clin Invest 108(8):1133–1139

    PubMed  CAS  Google Scholar 

  • Somers V et al (2008) Autoantibody profiling in multiple sclerosis reveals novel antigenic candidates. J Immunol 180(6):3957–3963

    PubMed  CAS  Google Scholar 

  • Srivastava R et al (2012) Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med 267(2):115–123

    Article  Google Scholar 

  • Storch MK et al (1998) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43(4):465���471

    Article  PubMed  CAS  Google Scholar 

  • Vandvik B et al (1976) Oligoclonal measles virus-specific IgG antibodies isolated from cerebrospinal fluids, brain extracts, and sera from patients with subacute sclerosing panencephalitis and multiple sclerosis. Scand J Immunol 5(8):979–992

    Article  PubMed  CAS  Google Scholar 

  • Villar LM et al (2002) Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology 59(4):555–559

    Article  PubMed  CAS  Google Scholar 

  • Villar LM et al (2003) Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol 53(2):222–226

    Article  PubMed  CAS  Google Scholar 

  • Vogt MH et al (2009) Cerebrospinal fluid anti-myelin antibodies are related to magnetic resonance measures of disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 80(10):1110–1115

    Article  PubMed  CAS  Google Scholar 

  • von Budingen HC et al (2002) Molecular characterization of antibody specificities against myelin/oligodendrocyte glycoprotein in autoimmune demyelination. Proc Natl Acad Sci U S A 99(12):8207–8212

    Article  Google Scholar 

  • von Budingen HC et al (2004) Frontline: epitope recognition on the myelin/oligodendrocyte glycoprotein differentially influences disease phenotype and antibody effector functions in autoimmune demyelination. Eur J Immunol 34(8):2072–2083

    Article  Google Scholar 

  • Walsh MJ, Tourtellotte WW (1986) Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med 163(1):41–53

    Article  PubMed  CAS  Google Scholar 

  • Weber MS, Prod’homme T, Patarroyo JC, Molnarfi N, Karnezis T, Lehmann-Horn K, Danilenko DM, Eastham-Anderson J, Slavin AJ, Linington C, Bernard CC, Martin F, Zamvil SS (2010) B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 68(3):369–383. doi:10.1002/ana.22081

    Google Scholar 

  • Winges KM et al (2007) Analysis of multiple sclerosis cerebrospinal fluid reveals a continuum of clonally related antibody-secreting cells that are predominantly plasma blasts. J Neuroimmunol 192(1–2):226–234

    Article  PubMed  CAS  Google Scholar 

  • Zamvil S et al (1985) T cell clones specific for myelin basic protein induce relapsing EAE and demyelination. Nature 317:355–358

    Article  PubMed  CAS  Google Scholar 

  • Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Ann Rev Immunol 8:579–621

    Article  CAS  Google Scholar 

  • Zhang Y et al (2005) Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J Clin Immunol 25(3):254–264

    Article  PubMed  CAS  Google Scholar 

  • Zhou D et al (2006) Identification of a pathogenic antibody response to native myelin oligodendrocyte glycoprotein in multiple sclerosis. Proc Natl Acad Sci U S A 103(50):19057–19062

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hemmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hemmer, B., Kowarik, M., Weber, M. (2013). The Role of B Cells in Multiple Sclerosis. In: Yamamura, T., Gran, B. (eds) Multiple Sclerosis Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7953-6_5

Download citation

Publish with us

Policies and ethics