Skip to main content
Log in

Stepped-up development of accelerator mass spectrometry method for the detection of 60Fe with the HI-13 tandem accelerator

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae. Lunar samples retain valuable information from these events, via detectable long-lived “fingerprint” radionuclides such as \({}^{60} \hbox{Fe}\). In this work, we stepped up the development of an accelerator mass spectrometry (AMS) method for detecting \({}^{60} \hbox{Fe}\) using the HI-13 tandem accelerator at the China Institute of Atomic Energy (CIAE). Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph, a Wien filter with a maximum voltage of \(\pm\,60\,\text {kV}\) and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide \({}^{60} \hbox{Fe}\). A \(1\,\upmu \text {m}\) thick Si\(_{3}\)N\(_{4}\) foil was installed in front of the Q3D as an energy degrader. For particle detection, a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph. Finally, an \({}^{60} \hbox{Fe}\) sample with an abundance of \(1.125 \times 10^{-10}\) was used to test the new AMS system. These results indicate that \({}^{60} \hbox{Fe}\) can be clearly distinguished from the isobar \({}^{60} \hbox{Ni}\). The sensitivity was assessed to be better than \(4.3 \times 10^{-14}\) based on blank sample measurements lasting \(5.8\) h, and the sensitivity could, in principle, be expected to be approximately \(2.5 \times 10^{-15}\) when the data were accumulated for 100 h, which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.j00186.00511 and https://doi.org/10.57760/sciencedb.j00186.00511.

References

  1. J.F. Snape, A.A. Nemchin, M.J. Whitehouse et al., The timing of basaltic volcanism at the Apollo landing sites. Geochim. Cosmochim. Ac. 266, 29–53 (2019). https://doi.org/10.1016/j.gca.2019.07.042

    Article  ADS  Google Scholar 

  2. D. Stöffler, G. Ryder, Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Space Sci. Rev. 96, 9–54 (2001). https://doi.org/10.1023/A:1011937020193

    Article  ADS  Google Scholar 

  3. H. Hiesinger, J.W. Head III., New views of lunar geoscience: an introduction and overview. Rev. Mineral. Geochem. 60, 1–81 (2006). https://doi.org/10.2138/rmg.2006.60.1

    Article  Google Scholar 

  4. L.E. Borg, J.N. Connelly, M. Boyet et al., Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011). https://doi.org/10.1038/nature10328

    Article  ADS  Google Scholar 

  5. H.-C. Tian, C. Zhang, W. Yang et al., Surges in volcanic activity on the Moon about two billion years ago. Nat. Commun. 14, 3734 (2023). https://doi.org/10.1038/s41467-023-39418-0

    Article  ADS  Google Scholar 

  6. C.L. Li, H. Hu, M.-F. Yang et al., Characteristics of the lunar samples returned by the Chang’E-5 mission. Nat. Sci. Rev. 9, nwab188 (2022). https://doi.org/10.1093/nsr/nwab188

    Article  Google Scholar 

  7. A. Wallner, M. Bichler, K. Buczak et al., Settling the half-life of \(^{60}\hbox{Fe}\): fundamental for a versatile astrophysical chronometer. Phys. Rev. Lett. 114, 041101 (2015). https://doi.org/10.1103/PhysRevLett.114.041101

    Article  ADS  Google Scholar 

  8. K.M. Ostdiek, T.S. Anderson, W.K. Bauder et al., Activity measurement of 60Fe through the decay of \(^{60m}\)Co and confirmation of its half-life. Phys. Rev. C 95, 055809 (2017). https://doi.org/10.1103/PhysRevC.95.055809

    Article  ADS  Google Scholar 

  9. C. Domingo-Pardo, I. Dillmann, T. Faestermann et al., S-process nucleosynthesis in massive stars: new results on \(^{60}\hbox{Fe}\),\(^{62}\hbox{Ni}\) and \(^{64}\hbox{Ni}\). AIP Conf. Proc. 1090, 230–237 (2009). https://doi.org/10.1063/1.3087019

    Article  ADS  Google Scholar 

  10. S.Q. Yan, X.Y. Li, K. Nishio et al., The 59Fe (n,\(\gamma\)) \(^{60}\hbox{Fe}\) cross section from the surrogate ratio method and its effect on the \(^{60}\hbox{Fe}\) nucleosynthesis. Astrophys. J. 919, 84 (2021). https://doi.org/10.3847/1538-4357/ac12ce

    Article  Google Scholar 

  11. M. Limongi, A. Chieffi, The nucleosynthesis of \(^{26}\)Al and \(^{60}\)Fe in solar metallicity stars extending in mass from 11 to 120 M\(\odot\): The hydrostatic and explosive contributions. Astrophys. J. 647, 483 (2006). https://doi.org/10.1086/505164

    Article  ADS  Google Scholar 

  12. L. Fimiani, D.L. Cook, T. Faestermann et al., Interstellar \(^{60}\)Fe on the surface of the moon. Phys. Rev. Lett. 116, 151104 (2016). https://doi.org/10.1103/PhysRevLett.116.151104

    Article  ADS  Google Scholar 

  13. K. Knie, G. Korschinek, T. Faestermann et al., Indication for supernova produced \(^{60}\)Fe activity on earth. Phys. Rev. Lett. 83, 18–21 (1999). https://doi.org/10.1103/PhysRevLett.83.18

    Article  ADS  Google Scholar 

  14. A. Wallner, J. Feige, N. Kinoshita et al., Recent near-earth supernovae probed by global deposition of interstellar radioactive \(^{60}\)Fe. Nature 532, 69–72 (2016). https://doi.org/10.1038/nature17196

    Article  ADS  Google Scholar 

  15. C. Fitoussi, G.M. Raisbeck, K. Knie et al., Search for supernova-produced \(^{60}\)Fe in a marine sediment. Phys. Rev. Lett. 101, 121101 (2008). https://doi.org/10.1103/PhysRevLett.101.121101

    Article  ADS  Google Scholar 

  16. D. Koll, G. Korschinek, T. Faestermann et al., Interstellar 60Fe in Antarctica. Phys. Rev. Lett. 123, 072701 (2019). https://doi.org/10.1103/PhysRevLett.123.072701

    Article  ADS  Google Scholar 

  17. S. Hu, H. He, J. Ji et al., A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature 600, 49–53 (2021). https://doi.org/10.1038/s41586-021-04107-9

    Article  ADS  Google Scholar 

  18. Q.-L. Li, Q. Zhou, Y. Liu et al., Two-billion-year-old volcanism on the moon from Chang’e-5 basalts. Nature 600, 54–58 (2021). https://doi.org/10.1038/s41586-021-04100-2

    Article  ADS  Google Scholar 

  19. H.-C. Tian, H. Wang, Y. Chen et al., Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600, 59–63 (2021). https://doi.org/10.1038/s41586-021-04119-5

    Article  ADS  Google Scholar 

  20. X. Zeng, X. Li, J. Liu, Exotic clasts in Chang’e-5 regolith indicative of unexplored terrane on the Moon. Nat. Astron. 7, 152–159 (2023). https://doi.org/10.1038/s41550-022-01840-7

    Article  ADS  Google Scholar 

  21. Y. Yao, C. Xiao, P. Wang et al., Instrumental neutron activation analysis of Chang’E-5 lunar regolith samples. J. Am. Chem. Soc. 144, 5478–5484 (2022). https://doi.org/10.1021/jacs.1c13604

    Article  Google Scholar 

  22. Y. Jiang, J. Kang, S. Liao et al., Fe and Mg isotope compositions indicate a hybrid mantle source for Young Chang’E 5 mare basalts. Astrophys. J. Lett. 945, L26 (2023). https://doi.org/10.3847/2041-8213/acbd31

    Article  ADS  Google Scholar 

  23. Y. Yao, C. Xiao, L. Zhao et al., Determination of \(^{58}\)Fe/\(^{54}\)Fe isotope ratios in Chang’E-5 lunar regolith by instrumental neutron activation analysis. Nucl. Anal. 3, 100102 (2024). https://doi.org/10.1016/j.nucana.2024.100102

    Article  Google Scholar 

  24. X. Lu, J. Chen, Z. Ling et al., Mature lunar soils from Fe-rich and young mare basalts in the Chang’e-5 regolith samples. Nat. Astron. 7, 142–151 (2023). https://doi.org/10.1038/s41550-022-01838-1

    Article  ADS  Google Scholar 

  25. K.N. Li, C.X. Kan, X.F. Wang et al., Practice and innovation in the operation and maintenance of HI-13 tandem accelerator for 35 years. Nuclear Techniques (in Chinese) 46, 080005 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080005

    Google Scholar 

  26. W.P. Liu, Review of the development of tandem accelerator laboratory in 35 years. Nuclear Techniques (in Chinese) 46, 080022 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080022

    Google Scholar 

  27. M. He, S. Jiang, S. Jiang et al., Development of AMS measurements and applications at the CIAE. Nucl. Instrum. Meth. Phys. Res. Sect. B 172, 87–90 (2000). https://doi.org/10.1016/S0168-583X(00)00370-0

    Article  ADS  Google Scholar 

  28. Y.L. Dou, M. Lin, M. He et al., AMS measurement of in-situ produced cosmogenic 10Be in Loess Quartz in Luochuan. Chinese Phys. C 32 279–283 (2008). http://csnsdoc.ihep.ac.cn/article/id/en/article/id/3152caed-097e-411e-8a82-c7c4e7ac8fb2

  29. J. Gong, C. Li, W. Wang et al., 32Si AMS measurement with \(\Delta\)E-Q3D method. Nucl. Instrum. Meth. Phys. Res. Sect. B 269, 2745–2749 (2011). https://doi.org/10.1016/j.nimb.2011.08.026

    Article  ADS  Google Scholar 

  30. C. Li, M. He, W. Zhang et al., AMS measurement of \(^{36}\)Cl with a Q3D magnetic spectrometer at CIAE. Plasma Sci. Technol 14, 543 (2012). https://doi.org/10.1088/1009-0630/14/6/25

    Article  ADS  Google Scholar 

  31. K.J. Dong, M. He, S.Y. Wu et al., Application of \(^{41}\)Ca tracer and its AMS measurement in CIAE. Chinese Phys. Lett. 21, 51 (2004). https://doi.org/10.1088/0256-307X/21/1/015

    Article  ADS  Google Scholar 

  32. Z.C. Li, Y.H. Cheng, Y. Chen et al., Beijing Q3D magnetic spectrometer and its applications. Nucl. Instrum. Meth. Phys. Res. Sect. A 336, 150–161 (1993). https://doi.org/10.1016/0168-9002(93)91091-Z

    Article  ADS  Google Scholar 

  33. C. Li, M. He, S. Jiang et al., An isobar separation method with Q3D magnetic spectrometer for AMS. Nucl. Instrum. Meth. Phys. Res. Sect. A 622, 536–541 (2010). https://doi.org/10.1016/j.nima.2010.07.065

    Article  ADS  Google Scholar 

  34. Y. Zhang, M. He, F. Wang et al., Developing the measurement of \(^{60}\)Fe with AMS at CIAE. Nucl. Instrum. Meth. Phys. Res. Sect. B 438, 156–161 (2019). https://doi.org/10.1016/j.nimb.2018.05.020

    Article  ADS  Google Scholar 

  35. F.F. Wang, M. He, Y.X. Zhang et al., \(^{60}\)Fe Sample preparation and extraction method for measurement with accelerator mass spectrometry. J. Isotopes 32, 103 (2019). https://doi.org/10.7538/tws.2018.youxian.008. (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the HI-13 tandem accelerator for smooth operation of the machine.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yong-Shou Chen, Wei-Ping Liu, Bing Guo, Sheng-Quan Yan, Yun-Ju Li, You-Bao Wang, Zhi-Hong Li, Yang-Ping Shen and Ming He contributed to the conceptualization and methodology. Material preparation, data collection and analysis were performed by Yang Zhang, Sheng-Quan Yan, Ming He, Qing-Zhang Zhao, Wen-Hui Zhang, Chao-Xin Kan, Jian-Ming Zhou, Kang-Ning Li, Xiao-Fei Wang, Jian-Cheng Liu, Zhao-Hua Peng, Zhuo Liang, Ai-Ling Li, Jian Zheng, Qi-Wen Fan, Ding Nan, Wei Nan, Yu-Qiang Zhang, Jia-Ying-Hao Li, Jun-Wen Tian, Jiang-Lin Hou, Chang-Xin Guo, Zhi-Cheng Zhang, Ming-Hao Zhu, Yu-Wen Chen, Yu-Chen Jiang, Tao Tian, Jin-Long Ma, Yi-Hui Liu, Jing-Yu Dong, Run-Long Liu and Mei-Yue-Nan Ma. The first draft of the manuscript was written by Yang Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bing Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 12125509, 12222514, 11961141003, and 12005304), National Key Research and Development Project (No. 2022YFA1602301), CAST Young Talent Support Plan, the CNNC Science Fund for Talented Young Scholars Continuous support for basic scientific research projects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yan, SQ., He, M. et al. Stepped-up development of accelerator mass spectrometry method for the detection of 60Fe with the HI-13 tandem accelerator. NUCL SCI TECH 35, 77 (2024). https://doi.org/10.1007/s41365-024-01453-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01453-x

Keywords

Navigation