Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Separate effects of irradiation and impacts on lunar metallic iron formation observed in Chang’e-5 samples

Subjects

Abstract

Nanophase iron particles (npFe0) are generated on the surface of airless bodies by space weathering and can alter surficial optical properties substantially. However, the details of their formation pathways are still unclear. Here we use impact glasses returned from the Moon by Chang’e-5 to distinguish the relative contributions of solar wind irradiation and (micro)meteorites impacts to the production of different-sized npFe0. We show that solar wind irradiation can solely produce small npFe0, via implantation of solar wind ions into the topmost grain surfaces. On the other hand, (micro)meteorite impacts produce directly large npFe0 in melts, through impact-triggered disproportionation reaction or thermal decomposition. These nanoparticles are also capable to further coalesce into micrometre-sized Fe0 particles during impacts. These findings can help in predicting the space-weathering behaviour of regions exposed to different space environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of ULnpFe0 on extremities of impact glasses.
Fig. 2: Characterizations of volume-correlated LnpFe0 and surface-correlated SnpFe0 in an impact glass.
Fig. 3: Size distributions of the three different types of npFe0.
Fig. 4: Abundant SnpFe0 throughout tiny glass grains.
Fig. 5: Schematic of origins of npFe0.

Similar content being viewed by others

Data availability

All data supporting this study are presented in the paper and its Supplementary Information. Source data for Figs. 14 are available via figshare at https://doi.org/10.6084/m9.figshare.25683804 (ref. 55).

References

  1. Pieters, C. M. et al. Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101–1107 (2000).

    Article  ADS  Google Scholar 

  2. Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V. & McKay, D. S. Lunar mare soils: space weathering and the major effects of surface‐correlated nanophase Fe. J. Geophys. Res. Planets 106, 27985–27999 (2001).

    Article  ADS  Google Scholar 

  3. Sasaki, S., Nakamura, K., Hamabe, Y., Kurahashi, E. & Hiroi, T. Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature 410, 555–557 (2001).

    Article  ADS  Google Scholar 

  4. Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106, 10039–10073 (2001).

    Article  ADS  Google Scholar 

  5. Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016).

    Article  ADS  Google Scholar 

  6. Noguchi, T. et al. Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121–1125 (2011).

    Article  ADS  Google Scholar 

  7. Lucey, P. G. & Riner, M. A. The optical effects of small iron particles that darken but do not redden: evidence of intense space weathering on Mercury. Icarus 212, 451–462 (2011).

    Article  ADS  Google Scholar 

  8. Noble, S. K., Pieters, C. M. & Keller, L. P. An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007).

    Article  ADS  Google Scholar 

  9. Chapman, C. R. Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004).

    Article  ADS  Google Scholar 

  10. Pieters, C. M. et al. Distinctive space weathering on Vesta from regolith mixing processes. Nature 491, 79–82 (2012).

    Article  ADS  Google Scholar 

  11. Li, C. et al. Impact-driven disproportionation origin of nanophase iron particles in Chang’e-5 lunar soil sample. Nat. Astron. 6, 1156–1162 (2022).

    Article  ADS  Google Scholar 

  12. Lu, X. J. et al. Mature lunar soils from Fe-rich and young mare basalts in the Chang’e-5 regolith samples. Nat. Astron. 7, 142–151 (2022).

    ADS  Google Scholar 

  13. Tai Udovicic, C. J., Costello, E. S., Ghent, R. R. & Edwards, C. S. New constraints on the lunar optical space weathering rate. Geophys. Res. Lett. 48, e2020GL092198 (2021).

    Article  ADS  Google Scholar 

  14. Keller, L. P. & McKay, D. S. Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993).

    Article  ADS  Google Scholar 

  15. Keller, L. P. & McKay, D. S. The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997).

    Article  ADS  Google Scholar 

  16. Xian, H. Y. et al. Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’e-5 sample. Nat. Astron. 7, 280–286 (2023).

    Article  ADS  Google Scholar 

  17. Bindi, L., Shim, S. H., Sharp, T. G. & Xie, X. D. Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Sci. Adv. 6, eaay7893 (2020).

    Article  ADS  Google Scholar 

  18. Housley, R. M., Grant, R. W. & Paton, N. E. Origin and characteristics of excess Fe metal in lunar glass welded aggregates. Geochim. Cosmoschim. Acta 3, 2737–2749 (1973).

    ADS  Google Scholar 

  19. Blewett, D. T., Denevi, B. W., Cahill, J. T. S. & Klima, R. L. Near-UV and near-IR reflectance studies of lunar swirls: implications for nanosize iron content and the nature of anomalous space weathering. Icarus 364, 114472 (2021).

    Article  Google Scholar 

  20. Glotch, T. D. et al. Formation of lunar swirls by magnetic field standoff of the solar wind. Nat. Commun. 6, 6189 (2015).

    Article  ADS  Google Scholar 

  21. Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M. & Birlan, M. Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993–995 (2009).

    Article  ADS  Google Scholar 

  22. Sim, C. K., Kim, S. S., Lucey, P. G., Garrick‐Bethell, I. & Choi, Y. J. Asymmetric space weathering on lunar crater walls. Geophys. Res. Lett. 44, 11273–11281 (2017).

    Article  ADS  Google Scholar 

  23. Hemingway, D. J., Garrick-Bethell, I. & Kreslavsky, M. A. Latitudinal variation in spectral properties of the lunar maria and implications for space weathering. Icarus 261, 66–79 (2015).

    Article  ADS  Google Scholar 

  24. Trang, D. & Lucey, P. G. Improved space weathering maps of the lunar surface through radiative transfer modeling of Kaguya multiband imager data. Icarus 321, 307–323 (2019).

    Article  ADS  Google Scholar 

  25. Li, Q. L. et al. Two billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  ADS  Google Scholar 

  26. Li, C. L. et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl Sci. Rev. 9, nwab188 (2022).

    Article  Google Scholar 

  27. Heiken, G. H., Vaniman, D. T. & French, B. M. Lunar Sourcebook: A User’s Guide to the Moon 1–721 (Cambridge Univ. Press, 1991).

  28. Zellner, N. E. B. Lunar impact glasses: probing the Moon’s surface and constraining its impact history. J. Geophys. Res. Planets 124, 2686–2702 (2019).

    Article  ADS  Google Scholar 

  29. Bastin, J. A. Rotating lunar globules. Nature 283, 108–108 (1980).

    Article  ADS  Google Scholar 

  30. Pugh, M. J. Rotation of lunar dumbbell-shaped globules during formation. Nature 237, 158–159 (1972).

    Article  ADS  Google Scholar 

  31. Burgess, K. D. & Stroud, R. M. Coordinated nanoscale compositional and oxidation state measurements of lunar space‐weathered material. J. Geophys. Res. Planets 123, 2022–2037 (2018).

    Article  ADS  Google Scholar 

  32. Thompson, M. S., Zega, T. J., Becerra, P., Keane, J. T. & Byrne, S. The oxidation state of nanophase Fe particles in lunar soil: implications for space weathering. Meteorit. Planet. Sci. 51, 1082–1095 (2016).

    Article  ADS  Google Scholar 

  33. Brett, R. Reduction of mare basalts by sulfur loss. Geochim. Cosmochim. Acta 40, 997–1004 (1976).

    Article  ADS  Google Scholar 

  34. Hu, G. L., Dam-Johansen, K., Wedel, S. & Hansen, J. P. Decomposition and oxidation of pyrite. Prog. Energy Combust. Sci. 32, 295–314 (2006).

    Article  Google Scholar 

  35. Zolensky, M. E. et al. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314, 1735–1739 (2006).

    Article  ADS  Google Scholar 

  36. Li, A. et al. Taking advantage of glass: capturing and retaining of the helium gas on the moon. Mater. Futures 1, 035101 (2022).

    Article  Google Scholar 

  37. Bradley, J. P. et al. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Natl Acad. Sci. USA 111, 1732–1735 (2014).

    Article  ADS  Google Scholar 

  38. Krishan, K. Ordering of voids and gas bubbles in radiation environments. Radiat. Eit. 66, 121–155 (1982).

    Article  ADS  Google Scholar 

  39. Zhou, C. J. et al. Chang’E-5 samples reveal high water content in lunar minerals. Nat. Commun. 13, 5336 (2022).

    Article  ADS  Google Scholar 

  40. Xu, Y. C. et al. High abundance of solar wind-derived water in lunar soils from the middle latitude. Proc. Natl Acad. Sci. USA 119, e2214395119 (2022).

    Article  Google Scholar 

  41. Bibring, J. P. et al. Ultrathin amorphous coatings on lunar dust grains. Science 175, 753–755 (1972).

    Article  ADS  Google Scholar 

  42. Kuhlman, K. R., Sridharan, K. & Kvit, A. Simulation of solar wind space weathering in orthopyroxene. Planet. Space Sci. 115, 110–114 (2015).

    Article  ADS  Google Scholar 

  43. Weber, I. et al. Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: a coordinated IR and TEM study. Earth Planet. Sci. Lett. 530, 115884 (2020).

    Article  Google Scholar 

  44. Zhang, S. L. & Keller, L. P. Space weathering effects in lunar soils: the roles of surface exposure time and bulk chemical composition. In 42nd Lunar and Planetary Science Conference No. JSC-CN-22819 (2011).

  45. Zhao, R. et al. Diverse glasses revealed from Chang’E-5 lunar regolith. Natl Sci. Rev. 10, nwad079 (2023).

    Article  Google Scholar 

  46. Guo, Z. et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E‐5 lunar soil: implications for thermal effects during impacts. Geophys. Res. Lett. 49, e2021GL097323 (2022).

    Article  ADS  Google Scholar 

  47. Matsumoto, T., Harries, D., Langenhorst, F., Miyake, A. & Noguchi, T. Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering. Nat. Commun. 11, 1117 (2020).

    Article  ADS  Google Scholar 

  48. Loeffler, M., Dukes, C. & Baragiola, R. Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. J. Geophys. Res. Planets 114, E03003 (2009).

    Article  ADS  Google Scholar 

  49. Dukes, C. A., Baragiola, R. A. & McFadden, L. A. Surface modification of olivine by H+ and He+ bombardment. J. Geophys. Res. Planets 104, 1865–1872 (1999).

    Article  ADS  Google Scholar 

  50. Liu, Y. et al. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012).

    Article  ADS  Google Scholar 

  51. Keller, L. P., Berger, E. L., Zhang, S. & Christoffersen, R. Solar energetic particle tracks in lunar samples: a transmission electron microscope calibration and implications for lunar space weathering. Meteorit. Planet. Sci. 56, 1685–1707 (2021).

    Article  ADS  Google Scholar 

  52. Strazzulla, G. et al. Spectral alteration of the Meteorite Epinal (H5) induced by heavy ion irradiation: a simulation of space weathering effects on near-Earth asteroids. Icarus 174, 31–35 (2005).

    Article  ADS  Google Scholar 

  53. Costello, E. S., Ghent, R. R., Hirabayashi, M. & Lucey, P. G. Impact gardening as a constraint on the age, source, and evolution of ice on Mercury and the Moon. J. Geophys. Res. Planets 125, e2019JE006172 (2020).

    Article  ADS  Google Scholar 

  54. Costello, E. S., Ghent, R. R. & Lucey, P. G. Secondary impact burial and excavation gardening on the Moon and the depth to ice in permanent shadow. J. Geophys. Res. Planets 126, e2021JE006933 (2021).

    Article  ADS  Google Scholar 

  55. Shen, L. & Chang, C. Distinguishing the effects of irradiation and impacts on lunar metallic iron formation. figshare https://doi.org/10.6084/m9.figshare.25683804 (2024).

Download references

Acknowledgements

We are indebted to the China National Space Administration (CNSA) for providing the lunar samples. We thank all the staff of China’s CE-5 project for their brilliant work returning lunar samples. This work was supported by the National Natural Science Foundation of China (T2322029, 52301225, 52192600, 52001220, 11790291 and 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000), the Special Research Assistant Funding Program of the Chinese Academy of Sciences and Guangdong Major Project of Basic and Applied Basic Research, China (2019B030302010).

Author information

Authors and Affiliations

Authors

Contributions

W.W., H.B., M.Y. and Z.Z. led the project. H.B. and L.S. supervised the research. L.S., R.Z., C.C., H.B. and W.W. conceived this work and wrote the manuscript. L.S. designed the experiments and performed the SEM measurements. D.X. and L.S performed the STEM measurements. L.S., R.Z. and C.C. analysed the experimental data. J.Y. assisted in data collection. All authors contributed to comment on the manuscript writing and the result discussions.

Corresponding authors

Correspondence to Laiquan Shen, Dongdong Xiao or Haiyang Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Zongcheng Ling and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Zhao, R., Chang, C. et al. Separate effects of irradiation and impacts on lunar metallic iron formation observed in Chang’e-5 samples. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02300-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing