Skip to main content

Advertisement

Log in

Grape skin extract-derived polyphenols modify programming-induced renal endowment in prenatal protein-restricted male mouse offspring

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Protein-restricted diet during pregnancy is related to oxidative stress and, as a consequence, damage to nephrogenesis. We investigated the effects of vinifera grape skin extract (ACH09)-derived polyphenols on preserving renal morphology of maternal protein-restricted 1-day-old offspring.

Methods

Female C57/Bl-6 mice were fed two different isocaloric diets: control diet (19.3 % protein) and low-protein diet (6 % protein) with access to water or to the extract dissolved in drinking water (19.3 % protein plus ACH09 200 mg kg−1 day−1 and 6 % protein plus ACH09 200 mg kg−1 day−1) throughout gestation. Renal morphology—glomerular number N[glom]; renal maturity—vascular glomeruli and avascular glomeruli ratio (v–N[glom]/a-N[glom]); medullar and cortical volumes, as well as mean glomerular volume, were analyzed in male offspring. Hepatic superoxide dismutase and catalase (CAT) activities were evaluated, and renal lipid peroxidation levels were measured.

Results

Maternal protein restriction affected birth weight and naso-anal length in low-protein offspring compared to control and ACH09 restored both parameters. Protein restriction increased lipid peroxidation in kidney and liver and reduced CAT activity in low-protein group compared to control. Supplementation with ACH09 reduced the kidney oxidative damage and restored the antioxidant activity of CAT. ACH09 prevented glomerular loss and renal immaturity in the offspring.

Conclusion

The treatment of low-protein-fed dams during pregnancy with ACH09 provides protection from early-life deleterious renal morphological changes. The protective effect of ACH09 may involve antioxidant action and vasodilator effect of the extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601

    Article  CAS  Google Scholar 

  2. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  CAS  Google Scholar 

  3. Woods LL (2007) Maternal nutrition and predisposition to later kidney disease. Curr Drug Targets 8(8):906–913

    Article  CAS  Google Scholar 

  4. Hall SM, Zeman FJ (1968) Kidney function of the progeny of rats fed a low protein diet. J Nutr 95(1):49–54

    CAS  Google Scholar 

  5. Zeman FJ (1968) Effects of maternal protein restriction on the kidney of the newborn young of rats. J Nutr 94(2):111–116

    CAS  Google Scholar 

  6. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci 114(1):1–17

    Article  CAS  Google Scholar 

  7. Luo ZC, Fraser WD, Julien P, Deal CL, Audibert F, Smith GN, Xiong X, Walker M (2006) Tracing the origins of “fetal origins” of adult diseases: programming by oxidative stress? Med Hypotheses 66(1):38–44

    Article  CAS  Google Scholar 

  8. Cambonie G, Comte B, Yzydorczyk C, Ntimbane T, Germain N, Lê NL, Pladys P, Gauthier C, Lahaie I, Abran D, Lavoie JC, Nuyt AM (2007) Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol Regul Integr Comp Physiol 292(3):R1236–R1245

    Article  CAS  Google Scholar 

  9. Frankel EN et al (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341(8843):454–457

    Article  CAS  Google Scholar 

  10. Madeira SV, de Castro Resende A, Ognibene DT, de Sousa MA, Soares de Moura R (2005) Mechanism of the endothelium-dependent vasodilator effect of an alcohol-free extract obtained from a vinifera grape skin. Pharmacol Res 52(4):321–327

    Article  CAS  Google Scholar 

  11. Resende AC, Moura AS, Maradei MF (2007) Protective action of a hydroalcoholic extract of a vinifera grape skin on experimental preeclampsia in rats. Hypertens Pregnancy 26(1):89–100

    Article  Google Scholar 

  12. Madeira SV, Auger C, Anselm E, Chataigneau M, Chataigneau T, Soares de Moura R, Schini-Kerth VB (2009) eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vasc Res 46(5):406–416

    Article  CAS  Google Scholar 

  13. Soares De Moura R, Costa Viana FS, Souza MA, Kovary K, Guedes DC, Oliveira EP, Rubenich LM, Carvalho LC, Oliveira RM, Tano T, Gusmão Correia ML (2002) Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J Pharm Pharmacol 54(11):1515–1520

    Article  CAS  Google Scholar 

  14. Resende AC, Emiliano AF, Cordeiro VS, de Bem GF, de Cavalho LC, de Oliveira PR, Neto ML, Costa CA, Boaventura GT, de Moura RS (2013) Grape skin extract protects against programmed changes in the adult rat offspring caused by maternal high-fat diet during lactation. J Nutr Biochem 24(12):2119–2126

    Article  CAS  Google Scholar 

  15. Soares de Moura R, da Costa GF, Moreira AS, Queiroz EF, Moreira DD, Garcia-Souza EP, Resende AC, Moura AS, Teixeira MT (2012) Vitis vinifera L grape skin extract activates the insulin-signalling cascade and reduces hyperglycaemia in alloxan-induced diabetic mice. J Pharm Pharmacol 64(2):268–276

    Article  CAS  Google Scholar 

  16. Wang H, Race EJ, Shrikhande AJ (2003) Characterization of anthocyanins in grape juices by ion trap liquid chromatography-mass spectrometry. J Agric Food Chem 51(7):1839–1844

    Article  CAS  Google Scholar 

  17. Garcia-Beneytez EF, Cabello F, Revilla E (2003) Analysis of grape and wine anthocyanins by HPLC-MS. J Agric Food Chem 51(19):5622–5629

    Article  CAS  Google Scholar 

  18. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    CAS  Google Scholar 

  19. Woods LL, Ingelfinger JR, Rasch R (2005) Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol 289(4):R1131–R1136

    Article  CAS  Google Scholar 

  20. Koca R, Armutcu F, Altinyazar C, Gürel A. (2005) Evaluation of lipid peroxidation, oxidant/antioxidant status, and serum nitric oxide levels in alopecia areata. Med Sci Monit 11(6):CR296-CR299

  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  22. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  CAS  Google Scholar 

  23. Pires KM, Aguila MB, Mandarim-de-Lacerda CA (2006) Early renal structure alteration in rat offspring from dams fed low protein diet. Life Sci 79(22):2128–2134

    Article  CAS  Google Scholar 

  24. Jolicoeur P, Heusner AA (1986) Log-normal variation belts for growth curves. Biometrics 42(4):785–794

    Article  CAS  Google Scholar 

  25. Davis FC (1989) Daily variation in maternal and fetal weight gain in mice and hamsters. J Exp Zool 250(3):273–282

    Article  CAS  Google Scholar 

  26. Rashid K, Sinha K, Sil PC (2013) An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 62:584–600

    Article  CAS  Google Scholar 

  27. Georgeson GD, Szony BJ, Streitman K, Varga IS, Kovács A, Kovács L, László A (2002) Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur J Obstet Gynecol Reprod Biol 103(2):136–139

    Article  CAS  Google Scholar 

  28. Fetoui H, Garoui M, Zeghal N (2009) Protein restriction in pregnant- and lactating rats-induced oxidative stress and hypohomocysteinaemia in their offspring. J Anim Physiol Anim Nutr 93(2):263–270

    Article  CAS  Google Scholar 

  29. Toescu V, Nuttall SL, Martin U, Kendall MJ, Dunne F (2002) Oxidative stress and normal pregnancy. Clin Endocrinol 57(5):609–613

    Article  CAS  Google Scholar 

  30. Pires KM, Valença SS, Resende ÂC, Porto LC, Queiroz EF, Moreira DD, de Moura RS (2011) Grape skin extract reduced pulmonary oxidative response in mice exposed to cigarette smoke. Med Sci Monit 17(8):BR87–BR195

    Article  Google Scholar 

  31. Ashour MN, Salem SI, El-Gadban HM, Elwan NM, Basu TK (1999) Antioxidant status in children with protein-energy malnutrition (PEM) living in Cairo, Egypt. Eur J Clin Nutr 53(8):669–6673

    Article  CAS  Google Scholar 

  32. Schroder-van der Elst JP, van der Heide D, Rokos H, Morreale de Escobar G, Köhrle J (1998) Synthetic flavonoids cross the placenta in the rat and are found in fetal brain. Am J Physiol 274(2 Pt 1):E253–E256

    CAS  Google Scholar 

  33. Langley-Evans SC, Welham SJ, Jackson AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64(11):965–974

    Article  CAS  Google Scholar 

  34. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65(4):1339–1348

    Article  Google Scholar 

  35. Nwagwu MO, Cook A, Langley-Evans SC (2000) Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr 83(1):79–85

    CAS  Google Scholar 

  36. de Moura RS, Miranda DZ, Pinto AC, Sicca RF, Souza MA, Rubenich LM, Carvalho LC, Rangel BM, Tano T, Madeira SV, Resende AC (2004) Mechanism of the endothelium-dependent vasodilation and the antihypertensive effect of Brazilian red wine. J Cardiovasc Pharmacol 44(3):302–309

    Article  Google Scholar 

  37. Kim CH (2013) Expression of extracellular superoxide dismutase protein in diabetes. Arch Plast Surg 40(5):517–521

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Council of Scientific and Technological Development (CNPq, Protocol 473514/2011-7) and Rio de Janeiro State Research Agency (FAPERJ; Protocol E-26/102.920/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângela Castro Resende.

Ethics declarations

Conflict of interest

Roberto Soares de Moura is the inventor of a patent (PCT/BR02/00038) that supported the development of a new patent application (PI0605693 A2-8). The other authors state no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.R., Pires, K.M.P., Nalbones-Barbosa, M.N. et al. Grape skin extract-derived polyphenols modify programming-induced renal endowment in prenatal protein-restricted male mouse offspring. Eur J Nutr 55, 1455–1464 (2016). https://doi.org/10.1007/s00394-015-0963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0963-5

Keywords

Navigation