Skip to main content

Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian

  • Chapter
Archaeological Obsidian Studies

Abstract

Non-destructive XRF analysis of obsidian artifacts presents unique challenges for quantitative trace element characterization. These empirical tests of the effects of sample size and surface configuration allow estimation of minimum size requirements for different analyses. The results also show that errors resulting from surface irregularities are usually insignificant relative to other errors in the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bertin, E. 1978 Introduction to X-ray Spectrometric Analysis. New York, Plenum Press.

    Google Scholar 

  • Bouey, P 1991 Recognizing the limits of archaeological applications of non-destructive energy-dispersive X-ray fluorescence analysis of obsidians. Materials Research Society Proceedings 185: 309–320.

    Article  Google Scholar 

  • Davis, M. K. 1994 Bremsstrahlung ratio technique applied to the non-destructive energy-dispersive X-ray fluorescence analysis of obsidian. International Association for Obsidian Studies Bulletin 11.

    Google Scholar 

  • Franzini, M., L. L. and Saitta M. 1976 Determination of the X-ray fluorescence mass absorption coefficient by measurement of the intensity of Ag Ka compton scattered radiation. X-ray Spectrometry 5: 84–87.

    Google Scholar 

  • Giaque, R. D., Asaro, E, and Stross, E H. 1993 High precision non-destructive X-ray fluorescence method applicable to establishing the provenance of obsidian artifacts. X-ray Spectrometry 22: 44–53.

    Article  Google Scholar 

  • Jenkins, R., Gould, R.W., and Gedcke, D. 1981 Quantitative X-ray Spectrometry. New York, Marcel Dekker, Inc.

    Google Scholar 

  • Govindaraju, K. 1989 1989 Compilation of working values and sample description for 272 geostandards. Geostandards Newsletter 13 (special issue).

    Google Scholar 

  • Hampel, J.H. 1984 Technical considerations in X-ray fluorescence analysis of obsidian. In: Hughes, R. E. ed., Obsidian Studies in the Great Basin. Berkeley, Contributions of the University of California Archaeological Research Facility: 21–25.

    Google Scholar 

  • Hughes, R. E. 1984 Obsidian source studies in the Great Basin: Problems and Prospects. In: Hughes, R. E. ed., Obsidian Studies in the Great Basin. Berkeley: Contributions of the University of California Archaeological Research Facility: 1–20.

    Google Scholar 

  • Hughes, R. E. 1988 The Coso Volcanic field reexamined: implications for obsidian sourcing and hydration dating research. Geoarchaeology 3: 253–265.

    Article  Google Scholar 

  • Jackson, T.L. and Hampel, J.H. 1992 Size Effects in the Energy-Dispersive X-ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian Artifacts. Presented at the 28th International Symposium on Archaeometry, Los Angeles.

    Google Scholar 

  • McCarthy, J.J., and Schamber, F.H. 1981 Least-squares fit with digital filter: a status report. In: Heinrich, K.F.J., Newbury, D.E., Myklebust, R.L. and Fiori, E. eds., Energy Dispersive X-ray Spectrometry. Washington, DC, National Bureau of Standards Special Publication 604: 273–296.

    Google Scholar 

  • Schamber, F.H. 1977 A modification of the linear least-squares fitting method which provides continuum suppression. In: Dzubay, T.G., ed., X-ray Fluorescence Analysis of Environmental Samples. Ann Arbor, Science Publishers: 241–257.

    Google Scholar 

  • Shackley, M. S. 1988 Sources of archaeological obsidian in the Southwest: an archaeological, petrological, and geochemical study. American Antiquity 53: 752–772.

    Article  Google Scholar 

  • Shackley, M. S. 1992 The Upper Gila River gravels as an archaeological obsidian source region: implications for models of exchange and interaction. Geoarchaeology 4: 315–326.

    Article  Google Scholar 

  • Shackley, M. Steven and Hampel, J. 1992 Surface effects in the energy dispersive X-ray fluorescence (EDXRF) analysis of archaeological obsidian. Presented at the 28th International Symposium on Archaeometry, Los Angeles.

    Google Scholar 

  • Tatlock, D. B., F.J. Flanagan, Harry Bastron, Sol Berman, and A. L. Sutton, Jr. 1976 Rhyolite, RGM-1, from Glass Mountain, California. In: E. J. Flanagan, ed., Descriptions and Analyses of Eight New USGS Roch Standards. U. S. Geological Survey Professional Paper 850: 11–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, M.K., Jackson, T.L., Shackley, M.S., Teague, T., Hampel, J.H. (1998). Factors Affecting the Energy-Dispersive X-Ray Fluorescence (EDXRF) Analysis of Archaeological Obsidian. In: Shackley, M.S. (eds) Archaeological Obsidian Studies. Advances in Archaeological and Museum Science, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9276-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9276-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9278-2

  • Online ISBN: 978-1-4757-9276-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics