Skip to main content
Log in

Search for Pre-Burst Emission from Binary Neutron Star Mergers with Spectrum–Roentgen–Gamma

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Close binary systems consisting of two neutron stars (BNS) emit gravitational waves, that allow them to merge on timescales shorter than Hubble time. It is widely believed, that NS–NS mergers in such systems power short gamma-ray bursts (GRB). Several mechanisms which could lead to electromagnetic energy release prior to a merger have been proposed. We estimate the ability to observe the possible pre-burst emission with telescopes of Spectrum–Roentgen–Gamma. We also investigate first such event, GRB210919A, which fell into the field of view of the SRG telescopes less than two days before the burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://swift.gsfc.nasa.gov/archive/grb_table/index.php

REFERENCES

  1. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, et al., Astrophys. J. Lett. 848, L13 (2017).

    Article  ADS  Google Scholar 

  2. R. Abbott, T. D. Abbott, F. Acernese, et al. (LIGO Sci. Collab., the Virgo Collab., the KAGRA Collab.), arXiv: 2111.03634 (2021).

  3. I. Andreoni, E. C. Kool, A. Sagués Carracedo, M. M. Kasliwal, M. Bulla, T. Ahumada, et al., Astrophys. J. 904, 155 (2020).

    Article  ADS  Google Scholar 

  4. I. Andreoni, M. W. Coughlin, M. Almualla, E. C. Bellm, F. B. Bianco, M. Bulla, et al., arXiv: 2106.06820 (2021).

  5. S. D. Barthelmy, H. A. Krimm, S. Laha, A. Y. Lien, C. B. Markwardt, D. M. Palmer, et al., GRB Coord. Network 30863, 1 (2021).

    Google Scholar 

  6. E. C. Bellm, S. R. Kulkarni, M. J. Graham, R. Dekany, R. M. Smith, R. Riddle, et al., Publ. Astron. Soc. Pacif. 131 (995), 018002 (2019).

    Article  ADS  Google Scholar 

  7. E. Berger, Ann. Rev. Astron. Astrophys. 52, 43 (2014).

    Article  ADS  Google Scholar 

  8. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Sov. Astron. Lett. 10, 177 (1984).

    ADS  Google Scholar 

  9. S. I. Blinnikov, D. K. Nadyozhin, N. I. Kramarev, and A. V. Yudin, Astron. Rep. 65, 385 (2021).

    Article  ADS  Google Scholar 

  10. H. Brunner, T. Boller, D. Coutinho, T. Dauser, K. Dennerl, T. Dwelly, et al., in Proceedings of the Conference on Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Ed. by J.-W. A. den Herder, S. Nikzad, and K. Nakazawa, Proc. SPIE 10699, 106995G (2018).

  11. J. P. A. Clark and D. M. Eardley, Astrophys. J. 215, 311 (1977).

    Article  ADS  Google Scholar 

  12. P. A. Evans, A. P. Beardmore, K. L. Page, J. P. Osborne, P. T. O’Brien, R. Willingale, et al., Mon. Not. R. Astron. Soc. 397, 1177 (2009).

    Article  ADS  Google Scholar 

  13. W. Fong and E. Berger, Astrophys. J. 776, 18 (2013).

    Article  ADS  Google Scholar 

  14. C. Fryer and V. Kalogera, Astrophys. J. 489, 244 (1997).

    Article  ADS  Google Scholar 

  15. A. Gilkis, N. Soker, and A. Kashi, Mon. Not. R. Astron. Soc. 482, 4233 (2019).

    Article  ADS  Google Scholar 

  16. M. R. Goad, J. P. Osborne, A. P. Beardmore, P. A. Evans, and Swift-XRT Team, GRB Coord. Network 30850, 1 (2021).

    Google Scholar 

  17. A. Gottlieb, S. Dichiara, S. B. Cenko, E. Troja, J. M. Durbak, A. Kutyrev, et al., GRB Coord. Network 30860, 1 (2021).

    Google Scholar 

  18. B. M. S. Hansen and M. Lyutikov, Mon. Not. R. Astron. Soc. 322, 695 (2001).

    Article  ADS  Google Scholar 

  19. Ž. Ivezić, S. M. Kahn, J. A. Tyson, B. Abel, E. Acosta, R. Allsman, et al., Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  20. D. A. Kann, D. B. Malesani, V. D’Elia, A. de Ugarte Postigo, A. Rossi, C. C. Thoene, et al., GRB Coord. Network 30983, 1 (2021a).

    Google Scholar 

  21. D. A. Kann, A. Rossi, A. de Ugarte Postigo, C. Thoene, M. Blazek, J. F. Agui Fernandez, et al., GRB Coord. Network 30884, 1 (2021b).

    Google Scholar 

  22. D. A. Kann, A. Rossi, A. de Ugarte Postigo, C. Thoene, M. Blazek, J. F. Agui Fernandez, et al., GRB Coord. Network 30883, 1 (2021c).

    Google Scholar 

  23. I. Khabibullin, S. Sazonov, and R. Sunyaev, Mon. Not. R. Astron. Soc. 426, 1819 (2012).

    Article  ADS  Google Scholar 

  24. A. von Kienlin, C. A. Meegan, W. S. Paciesas, P. N. Bhat, E. Bissaldi, M. S. Briggs, et al., Astrophys. J. 893, 46 (2020).

    Article  ADS  Google Scholar 

  25. T. M. Koshut, C. Kouveliotou, W. S. Paciesas, J. van Paradijs, G. N. Pendleton, M. S. Briggs, et al., Astrophys. J. 452, 145 (1995).

    Article  ADS  Google Scholar 

  26. C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat, M. S. Briggs, T. M. Koshut, et al., Astrophys. J. Lett. 413, L101 (1993).

    Article  ADS  Google Scholar 

  27. D. Lai, Astrophys. J. Lett. 757, L3 (2012).

    Article  ADS  Google Scholar 

  28. L.-X. Li and B. Paczynśki, Astrophys. J. Lett. 507, L59 (1998).

    Article  ADS  Google Scholar 

  29. A. Lien, T. Sakamoto, S. D. Barthelmy, W. H. Baumgartner, J. K. Cannizzo, K. Chen, et al., Astrophys. J. 829, 7 (2016).

    Article  ADS  Google Scholar 

  30. R. Margutti, E. Berger, W. Fong, C. Guidorzi, K. D. Alexander, B. D. Metzger, et al., Astrophys. J. Lett. 848, L20 (2017).

    Article  ADS  Google Scholar 

  31. E. P. Mazets and S. V. Golenetskii, Astrophys. Space Sci. 75, 47 (1981).

    Article  ADS  Google Scholar 

  32. B. D. Metzger, Liv. Rev. Relat. 23, 1 (2019).

    Google Scholar 

  33. B. D. Metzger and C. Zivancev, Mon. Not. R. Astron. Soc. 461, 4435 (2016).

    Article  ADS  Google Scholar 

  34. P. Y. Minaev and A. S. Pozanenko, Astron. Lett. 43, 1 (2017).

    Article  ADS  Google Scholar 

  35. P. Y. Minaev and A. S. Pozanenko, Mon. Not. R. Astron. Soc. 492, 1919 (2020).

    Article  ADS  Google Scholar 

  36. B. O’Connor, E. Hammerstein, S. B. Cenko, E. Troja, A. Gottlieb, S. Dichiara, et al., GRB Coord. Network 30934, 1 (2021).

    Google Scholar 

  37. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  38. D. A. Perley, Z. P. Zhu, D. Xu, S. Y. Fu, D. B. Malesani, and A. Avramova-Boncheva, GRB Coord. Network 30852, 1 (2021).

    Google Scholar 

  39. J. Pierel, J. Cooke, A. Rest, R. Foley, and R. Ridden-Harper, GRB Coord. Network 30868, 1 (2021).

    Google Scholar 

  40. A. S. Pozanenko, M. V. Barkov, P. Y. Minaev, A. A. Volnova, E. D. Mazaeva, A. S. Moskvitin, et al., Astrophys. J. Lett. 852, L30 (2018).

    Article  ADS  Google Scholar 

  41. A. S. Pozanenko, P. Y. Minaev, S. A. Grebenev, and I. V. Chelovekov, Astron. Lett. 45, 710 (2020).

    Article  ADS  Google Scholar 

  42. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  43. J. C. Rastinejad, B. P. Gompertz, A. J. Levan, W. Fong, M. Nicholl, G. P. Lamb, et al., arXiv: 2204.10864 (2022).

  44. L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, Astrophys. J. Lett. 732, L6 (2011).

    Article  ADS  Google Scholar 

  45. A. Rossi, F. Cusano, E. Palazzi, L. Amati, D. B. Malesani, S. Savaglio, et al., GRB Coord. Network 31453, 1 (2022).

    Google Scholar 

  46. M. Ruiz, R. N. Lang, V. Paschalidis, and S. L. Shapiro, Astrophys. J. Lett. 824, L6 (2016).

    Article  ADS  Google Scholar 

  47. T. Sakamoto, E. Troja, J. Norris, S. D. Barthelmy, J. L. Racusin, N. Kawai, et al., GRB Coord. Network 30879, 1 (2021).

    Google Scholar 

  48. O. S. Salafia, G. Ghirlanda, S. Ascenzi, and G. Ghisellini, Astron. Astrophys. 628, A18 (2019).

    Article  ADS  Google Scholar 

  49. N. Soker, Mon. Not. R. Astron. Soc. 506, 2445 (2021).

    Article  ADS  Google Scholar 

  50. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  51. A. G. Suvorov and K. D. Kokkotas, Phys. Rev. D 101, 083002 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  52. D. Svinkin, D. Frederiks, R. Aptekar, S. Golenetskii, V. Pal’shin, P. P. Oleynik, et al., Astrophys. J. Suppl. Ser. 224, 10 (2016).

    Article  ADS  Google Scholar 

  53. A. Tohuvavohu, S. D. Barthelmy, A. Y. Lien, B. Sbarufatti, and Neil Gehrels Swift Observatory Team, GRB Coord. Network 30846, 1 (2021).

    Google Scholar 

  54. D. Tsang, J. S. Read, T. Hinderer, L. Piro, and R. Bondarescu, Phys. Rev. Lett. 108, 011102 (2012).

    Article  ADS  Google Scholar 

  55. J.-S. Wang, F.-K. Peng, K. Wu, and Z.-G. Dai, Astrophys. J. 868, 19 (2018).

    Article  ADS  Google Scholar 

  56. R. Willingale, R. L. C. Starling, A. P. Beardmore, N. R. Tanvir, and P. T. O’Brien, Mon. Not. R. Astron. Soc. 431, 394 (2013).

    Article  ADS  Google Scholar 

  57. J. Zhang, J. Cooke, G. Canalizo, S. M. Doan, S. Satyapal, T. Bohn, et al., GRB Coord. Network 30858, 1 (2021).

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work is based on the data from Mikhail Pavlinsky ART-XC and eROSITA X-ray instruments on board the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by its Space Research Institute (IKI) in the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum fur Luft- und Raumfahrt (DLR). The ART-XC team thanks the Russian Space Agency, Russian Academy of Sciences and State Corporation Rosatom for the support of the SRG project and ART-XC telescope and the Lavochkin Association (NPOL) with partners for the creation and operation of the SRG spacecraft (Navigator). The eROSITA X-ray telescope was built by a consortium of German Institutes led by MPE, and supported by DLR. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this work were processed using the eSASS software system developed by the German eROSITA consortium.

Funding

Authors are grateful to referees for critical remarks. This work was supported by the RFBR grant 19-29-11029. Work of KAP (interpretation of the results) was supported by Kazan Federal university program ‘‘Priority-2030’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Mereminskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereminskiy, I.A., Lutovinov, A.A., Postnov, K.A. et al. Search for Pre-Burst Emission from Binary Neutron Star Mergers with Spectrum–Roentgen–Gamma. Astron. Lett. 48, 370–375 (2022). https://doi.org/10.1134/S1063773722070064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722070064

Keywords:

Navigation