Skip to main content
Log in

Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

ensemble simulations with the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS) climate model (CM) for the 21st century are analyzed taking into account anthropogenic forcings in accordance with the Special Report on Emission Scenarios (SRES) A2, A1B, and B1, whereas agricultural land areas were assumed to change in accordance with the Land Use Harmonization project scenarios. Different realizations within these ensemble experiments were constructed by varying two governing parameters of the terrestrial carbon cycle. The ensemble simulations were analyzed with the use of Bayesian statistics, which makes it possible to suppress the influence of unrealistic members of these experiments on their results. It is established that, for global values of the main characteristics of the terrestrial carbon cycle, the SRES scenarios used do not differ statistically from each other, so within the framework of the model, the primary productivity of terrestrial vegetation will increase in the 21st century from 74 ± 1 to 102 ± 13 PgC yr−1 and the carbon storage in terrestrial vegetation will increase from 511 ± 8 to 611 ± 8 PgC (here and below, we indicate the mean ± standard deviations). The mutual compensation of changes in the soil carbon stock in different regions will make global changes in the soil carbon storage in the 21st century statistically insignificant. The global CO2 uptake by terrestrial ecosystems will increase in the first half of the 21st century, whereupon it will decrease. The uncertainty interval of this variable in the middle (end) of the 21st century will be from 1.3 to 3.4 PgC yr−1 (from 0.3 to 3.1 PgC yr−1). In most regions, an increase in the net productivity of terrestrial vegetation (especially outside the tropics), the accumulation of carbon in this vegetation, and changes in the amount of soil carbon stock (with the total carbon accumulation in soils of the tropics and subtropics and the regions of both accumulation and loss of soil carbon at higher latitudes) will be robust within the ensemble in the 21st century, as will the CO2 uptake from the atmosphere only by terrestrial ecosystems located at extratropical latitudes of Eurasia, first and foremost by the Siberian taiga. However, substantial differences in anthropogenic emissions between the SRES scenarios in the 21st century lead to statistically significant differences between these scenarios in the carbon dioxide uptake by the ocean, the carbon dioxide content in the atmosphere, and changes in the surface air temperature. In particular, according to the SRES A2 (A1B, B1) scenario, in 2071–2100 the carbon flux from the atmosphere to the ocean will be 10.6 ± 0.6 PgC yr−1 (8.3 ± 0.5, 5.6 ± 0.3 PgC yr−1), and the carbon dioxide concentration in the atmosphere will reach 773 ± 28 ppmv (662 ± 24, 534 ± 16 ppmv) by 2100. The annual mean warming in 2071–2100 relatively to 1961–1990 will be 3.19 ± 0.09 K (2.52 ± 0.08, 1.84 ± 0.06 K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Räisänen and T. N. Palmer, “A Probability and Decision-Model Analysis of a Multimodel Ensemble of Climate Change Simulations,” J. Clim. 14(15), 3212–3226 (2001).

    Article  Google Scholar 

  2. J. M. Murphy, D. M. H. Sexton, D. N. Barnett, et al., “Quantifying Uncertainties in Climate Change from a Large Ensemble of General Circulation Model Predictions,” Nature 430(7001), 768–772 (2004).

    Article  Google Scholar 

  3. G. C. Hegerl, T. R. Karl, M. Allen, et al., “Climate Change Detection and Distribution: Beyond Mean Temperature Signals,” J. Clim. 19(20), 5058–5077 (2006).

    Article  Google Scholar 

  4. J. M. Murphy, B. B. B. Booth, M. Collins, et al., “A Methodology for Probabilistic Predictions of Regional Climate Change from Perturbed Physics Ensembles,” Philos. Trans. R. Soc. Ser. A 364(1857), 1993–2028 (2007).

    Article  Google Scholar 

  5. P. A. Stott and C. E. Forest, “Ensemble Climate Predictions Using Climate Models and Observational Constraints,” Philos. Trans. R. Soc. Ser. A 364(1857), 2029–2052 (2007).

    Article  Google Scholar 

  6. D. Ackerley, E. J. Highwood, and D. J. Frame, “Quantifying the Effects of Perturbing the Physics of an Interactive Sulfur Scheme Using an Ensemble of Gems on the climateprediction.net Platform,” J. Geophys. Res. 114(D1), D01203 (2009).

    Article  Google Scholar 

  7. T. J. Osborn, S. C. B. Raper, and K. R. Briffa, “Simulated Climate Change during the Last 1000 years: Comparing the ECHO-G General Circulation Model with the MAGICC Simple Climate Model,” Clim. Dyn. 27(2–3), 185–197 (2006).

    Article  Google Scholar 

  8. P. F. Demchenko, A. V. Eliseev, M. M. Arzhanov, et al., “Impact of Global Warming Rate on Permafrost Degradation,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42(1), 35–43 (2006) [Izv., Atmos. Ocean. Phys. 42, 32–39 (2006)].

    Google Scholar 

  9. A. V. Eliseev, “Estimation of Uncertainty of Future Changes in the Concentration of Carbon Dioxide in the Atmosphere and Radiative Forcing of CO2,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44(3), 301–310 (2008) [Izv., Atmos. Ocean. Phys. 44, 279–287 (2008)].

    Google Scholar 

  10. O. Yokohata, M. J. Webb, M. Collins, et al., “Structural Similarities and Differences in Climate Responses to CO2 Increase between Two Perturbed Physics Ensembles,” J. Clim. 23(6), 1392–1410 (2010).

    Article  Google Scholar 

  11. P. A. Stott and J. A. Kettleborough, “Origins and Estimates of Uncertainty in Predictions of Twenty-First Century Temperature Rise,” Nature 416(6882), 723–726 (2002).

    Article  Google Scholar 

  12. A. S. Monin, Introduction to the Climate Theory (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  13. V. P. Meleshko, G. S. Golitsyn, V. A. Govorkova, et al., “Possible Anthropogenic Climate Changes in Russia in the 21st Century: Estimations from an Ensemble of Climate Models,” Meteorol. Gidrol., No. 4, 38–49 (2004).

  14. Climate Change 2007: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  15. A. M. Greene, L. Goddard, and U. Lall, “Probabilistic Multimodel Regional Temperature Change Projections,” J. Clim. 19(17), 4326–4343 (2006).

    Article  Google Scholar 

  16. V. Ch. Khon and I. I. Mokhov, “Climatic Changes in the Arctic and Possible Conditions of the Arctic Marine Navigation in the XXI Century,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 46(1), 19–25 (2010) [Izv., Atmos. Ocean. Phys. 46, 14–20 (2010)].

    Google Scholar 

  17. D. A. Stone, M. R. Allen, F. Selten, et al., “The Detection and Attribution of Climate Change Using an Ensemble of Opportunity,” J. Clim. 20(3), 504–516 (2007).

    Article  Google Scholar 

  18. P. Friedlingstein, P. Cox, R. Betts, et al., “Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison,” J. Clim. 19(22), 3337–3353 (2006).

    Article  Google Scholar 

  19. C. E. Forest, P. H. Stone, and A. P. Sokolov, “Estimated PDFs of Climate System Properties Including Natural and Anthropogenic Forcings,” Geophys. Rev. Lett. 33(1), L01705 (2006).

    Article  Google Scholar 

  20. O. Schneider von Deimling, H. Held, A. Ganopolski, et al., “Climate Sensitivity Estimated from Ensemble Simulations of Glacial Climate,” Clim. Dyn. 27(2–3), 149–163 (2006).

    Article  Google Scholar 

  21. A. V. Eliseev and I. I. Mokhov, “The Sensitivity of the Feedback between Climate and Carbon Cycle to the Choice of the Defining Parameters of Terrestrial Carbon Cycle in a Climate Model of Intermediate Complexity,” in Selected Papers of the International Conference on Measurement, Modeling, and Information Systems for Environmental Studies: ENVIROMIS-2006, Russia, Tomsk, 2006. Vychislit. Tekhnol. 11 (2006).

  22. A. V. Eliseev and I. I. Mokhov, “Carbon Cycle-Climate Feedback Sensitivity to Parameter Changes of a Zero-Dimensional Terrestrial Carbon Cycle Scheme in a Climate Model of Intermediate Complexity,” Theor. Appl. Climatol. 89(1–2), 9–24 (2007).

    Article  Google Scholar 

  23. S. Sitch, V. Brovkin, W. von Bloh, et al., “Impacts of Future Land Cover Changes on Atmospheric CO2 and Climate,” Glob. Biogeochem. Cycles 19(2), GB2013 (2005).

    Article  Google Scholar 

  24. E. M. Volodin, “General Circulation Model of the Atmosphere and Ocean with the Carbon Cycle,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(3), 298–313 (2007) [Izv., Atmos. Ocean. Phys. 43, 266–280 (2007)].

    Google Scholar 

  25. V. K. Petoukhov, I. I. Mokhov, A. V. Eliseev, et al., The IAP RAS Global Climate Model (Dialogue-MSU, Moscow, 1998).

    Google Scholar 

  26. D. Handorf, V. K. Petoukhov, K. Dethloff, et al., “Decadal Climate Variability in a Coupled Atmosphere-Ocean Climate Model of Moderate Complexity,” J. Geophys. Res. 104(D22), 27253–27275 (1999).

    Article  Google Scholar 

  27. I. I. Mokhov, A. V. Eliseev, P. F. Demchenko, et al., “Climate Changes and Their Assessment with the IAP RAS Global Model,” Dokl. Akad. Nauk 402, 243–247 (2005) [Doklady Earth Sci., 402, 591–595 (2005)].

    Google Scholar 

  28. I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, et al., “Model Estimates of Global Climatic Changes in the 21st Century with Account for Different Variation Scenarios of Solar Activity,” Dokl. Akad. Nauk 411(2), 250–253 (2006) [Doklady Earth Sci., 411, 1327–1330 (2006)].

    Google Scholar 

  29. I. I. Mokhov, V. A. Bezverkhnii, A. V. Eliseev, et al., “Model Estimations of Possible Climatic Changes in 21st Century at Different Scenarios of Solar and Volcanic Activities and anthropogenic forcings,” Kosm. Issl. 46(4), 363–367 (2008) [Cosmic. Res., 46, 354–357 (2006)].

    Google Scholar 

  30. A. V. Eliseev and I. I. Mokhov, “Uncertainty of Climate Response to Natural and Anthropogenic Forcings due to Different Land Use Scenarios,” Adv. Atmos. Sci. 28(5) (2011).

  31. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  32. I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, “Sensitivity of the IAP RAS Global Climate Model with an Interactive Carbon Cycle to Anthropogenic Forcings,” Dokl. Akad. Nauk 407, 400–404 (2006) [Doklady Earth Sci., 407, 424–428 (2006)].

    Google Scholar 

  33. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Climate and Carbon Cycle Variations in the 20th and the 21st Centuries in a Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(1), 3–17 (2007) [Izv., Atmos. Ocean. Phys. 43, 1–14 (2007)].

    Google Scholar 

  34. I. I. Mokhov and A. V. Eliseev, “Explaining the Eventual Transient Saturation of Climate-Carbon Cycle Feedback,” Carbon Balance Management 3(4) (2008).

  35. I. I. Mokhov, A. V. Eliseev, and A. A. Karpenko, Climate Change Research Trends, Ed. by L. N. Peretz (Nova Sci. Publ., Hauppauge, New York, 2008), pp. 217–241.

    Google Scholar 

  36. A. V. Eliseev, I. I. Mokhov, and A. A. Karpenko, “Influence of Direct Sulfate-Aerosol Radiative Forcing on the Results of Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(5), 591–601 (2007) [Izv., Atmos. Ocean. Phys. 43, 544–554 (2007)].

    Google Scholar 

  37. M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, et al., “Modeling of Changes in Temperature and Hydrological Regimes of Subsurface Permafrost, using the Climate Data (Reanalysis),” Kriosfera Zemli 11(4), 65–69 (2007).

    Google Scholar 

  38. M. M. Arzhanov, A. V. Eliseev, P. F. Demchenko, et al., “Simulation of Thermal and Hydrologic Regimes of Siberian River Watersheds under Permafrost Conditions from Reanalysis Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44, 86–93 (2008) [Izv., Atmos. Ocean. Phys. 44, 83–89 (2008)].

    Google Scholar 

  39. M. M. Arzhanov, P. F. Demchenko, A. V. Eliseev, et al., “Simulation of Characteristics of Thermal and Hydrological Soil Regimes in Equilibrium Numerical Experiments with a Climate Model of Intermediate Complexity,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 44, 591–610 (2008) [Izv., Atmos. Ocean. Phys. 44, 548–566 (2008)].

    Google Scholar 

  40. A. V. Eliseev, M. M. Arzhanov, P. F. Demchenko, et al., “Changes in Climatic Characteristics of Northern Hemisphere Extratropical Land in the 21st Century: Assessments with the IAP RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 45(3), 291–304 (2009) [Izv., Atmos. Ocean. Phys. 45 (3), 271–283 (2009)].

    Google Scholar 

  41. G. Marland, T. A. Boden, and R. J. Andres, “Global, Regional, and National CO2 Emissions,” Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2005).

    Google Scholar 

  42. G. C. Hurtt, L. R. Chini, S. Frolking, et al., “Harmonization of Global Land-Use Scenarios for the Period 1500–2100 for IPCC-AR5,” Integr. Land Ecosyst.-Atm. Proc. Study (iLEAPS) Newslett., No. 7, 6–8 (2009).

  43. C. MacFarling Meure, D. Etheridge, C. Trudinger, et al., “Dome CO2, CH4, and N2O Ice Core Records Extended to 2000 Years BP,” Geophys. Res. Lett. 33(14), L14810 (2006).

    Article  Google Scholar 

  44. S. J. Walker, R. F. Weiss, and P. K. Salameh, “Reconstructed Histories of the Annual Mean Atmospheric Mole Fractions for the Halocarbons CFC-11, CFC-12, CFC-113, and Carbon Tetrachloride,” J. Geophys. Res. 105(C6), 14285–14296 (2000).

    Article  Google Scholar 

  45. L. W. Horowitz, “Past, Present, and Future Concentrations of Tropospheric Ozone and Aerosols: Methodology, Ozone Evaluation, and Sensitivity to Aerosol Wet Deposition,” J. Geophys. Res. 111(D22), D22211 (2006).

    Article  Google Scholar 

  46. Y.-M. Wang, J. Lean, and N. R. Sheeley, “Modeling the Sun’s Magnetic Field and Irradiance Since 1713,” Astrophys. J. 625(1), 522–538 (2005).

    Article  Google Scholar 

  47. A. Robertson, J. Overpeck, D. Rind, et al., “Hypothesized Climate Forcing Time Series for the Last 500 years,” J. Geophys. Res. 106(D14), 14783–14804 (2001).

    Article  Google Scholar 

  48. S. M. Ammann, G. A. Meehl, W. M. Washington, et al., “A Monthly and Latitudinally Varying Volcanic Forcing Dataset in Simulations of 20th Century Climate,” Geophys. Res. Lett. 30(12), 1657 (2003).

    Article  Google Scholar 

  49. S. O. Los, G. J. Collatz, P. J. Sellers, et al., “A Global 9-year Biophysical Land-Surface Data Set from NOAA AVHRR Data,” J. Hydrometeorol. 1(2), 183–199 (2000).

    Article  Google Scholar 

  50. A. V. Eliseev and I. I. Mokhov, et al., “Effect of Changes in Land Surface Albedo During Land Use on the Climate in XVI-XXI Century: Assessment using the Climate Model of IAP RAS,” in Problems of Ecological Monitoring and Ecosystem Modeling, Ed. by Yu. A. Izrael, S. M. Semenov, and V. A. Abakumov (Inst. Global. Klimata Ekol. Rosgidrometa i RAN, Moscow, 2010), vol. XXIII [in Russian].

    Google Scholar 

  51. A. V. Eliseev and I. I. Mokhov, “Effect of Registration of the Radiation Effect of a Change in Land Surface Albedo for Land Use on Reproducing the Climate of XVI-XXI Centuries,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 47(1), 18–34 (2011) [Izv., Atmos. Ocean. Phys. 47, 15–30 (2011)].

    Google Scholar 

  52. A. V. Eliseev, “Comparison of the Efficiency of Changes in Land Surface Albedo for Land Use,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 47(3) (2011) [Izv., Atmos. Ocean. Phys. 47 (2011) (in press)].

  53. A. P. Sokolov, D. W. Kicklighter, J. M. Melillo, et al., “Consequences of Considering Carbon-Nitrogen Interactions on the Feedbacks Between Climate and the Terrestrial Carbon Cycle,” J. Clim. 21(15), 3776–3796 (2008).

    Article  Google Scholar 

  54. S. Piao, P. Ciais, P. Friedlingstein, et al., “Spatiotemporal Patterns of Terrestrial Carbon Cycle during the 20th Century,” Glob. Biogeochem. Cycles 23(4), GB4026 (2009).

    Article  Google Scholar 

  55. J. M. Gregory, C. D. Jones, P. Cadule, et al., “Quantifying Carbon Cycle Feedbacks,” J. Clim. 22(19), 5232–5250 (2009).

    Article  Google Scholar 

  56. R. E. Kass and A. E. Raftery, “Bayes Factors,” J. Amer. Stat. Assoc. 90(430), 773–795 (1995).

    Article  Google Scholar 

  57. J. A. Hoeting, D. Madigan, A. E. Raftery, et al., “Bayesian Model Averaging: A Tutorial,” Stat. Sci 14(4), 382–401 (1999).

    Article  Google Scholar 

  58. S. S. Leroy, “Detecting Climate Signals: Some Bayesian Aspects,” J. Clim. 11(4), 640–651 (1998).

    Article  Google Scholar 

  59. C. Tebaldi, L. O. Mearns, D. Nychka, et al., “Regional Probabilities of Precipitation Change: A Bayesian Analysis of Multimodel Simulations,” Geophys. Rev. Lett. 31(24), L24213 (2004).

    Article  Google Scholar 

  60. C. Tebaldi, R. W. Smith, D. Nychka, et al., “Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multi-Model Ensembles,” J. Clim. 18(10), 1524–1540 (2005).

    Article  Google Scholar 

  61. D. J. Frame, B. B. B. Booth, J. A. Kettleborough, et al., “Constraining Climate Forecasts: The Role of Prior Assumptions,” Geophys. Rev. Lett. 32(9), L09702 (2005).

    Article  Google Scholar 

  62. A. Lopez, C. Tebaldi, M. New, et al., “Two Approaches to Quantifying Uncertainty in Global Temperature Changes,” J. Clim. 19(19), 4785–4796 (2006).

    Article  Google Scholar 

  63. C. D. Keeling, J. F. S. Chine, and T. P. Whorf, “Increased Activity of Northern Vegetation Inferred from Atmospheric CO2 Measurements,” Nature 382, 146–149 (1996).

    Article  Google Scholar 

  64. N. Zeng, H. Qian, C. Roedenbeck, et al., “Impact of 1998–2002 Midlatitude Drought and Warming on Terrestrial Ecosystem and the Global Carbon Cycle,” Geophys. Rev. Lett. 32(22) (2005).

  65. P. Cadule, P. Friedlingstein, L. Bopp, et al., “Benchmarking Coupled Climate-Carbon Models Against Long-Term Atmospheric CO2 Measurements,” Glob. Biogeochem. Cycles 24(2), GB2016 (2010).

    Article  Google Scholar 

  66. Anthropogenic Climate Changes, Ed. by M. I. Budyko and Yu. A. Izrael’ (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  67. A. M. Tarko, Anthropogenic Changes in Global Biosphere Processes (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  68. O. I. Lenton, “Land and Ocean Carbon Cycle Feedback Effects on Global Warming in a Simple Earth System Model,” Tellus 52B(5), 1159–1188 (2000).

    Google Scholar 

  69. P. E. Thornton, J.-F. Lamarque, N. A. Rosenbloom, et al., “Influence of Carbon-Nitrogen Cycle Coupling on Land Model Response to CO2 Fertilization and Climate Variability,” Glob. Biogeochem. Cycles 21(4), GB4018 (2007).

    Article  Google Scholar 

  70. A. Jain, X. Yang, H. Kheshgi, et al., “Nitrogen Attenuation of Terrestrial Carbon Cycle Response to Global Environmental Factors,” Glob. Biogeochem. Cycles 23(4), GB4028 (2009).

    Article  Google Scholar 

  71. S. Gerber, L. O. Hedin, M. Oppenheimer, et al., “Nitrogen Cycling and Feedbacks in a Global Dynamic Land Model,” Glob. Biogeochem. Cycles 24(1), GB1001 (2010).

    Article  Google Scholar 

  72. V. K. Arora, G. J. Boer, J. R. Christian, et al., “The Effect of Terrestrial Photosynthesis Down Regulation on the Twentieth-Century Carbon Budget Simulated with the CCCma Earth System Model,” J. Clim. 22(22), 6066–6088 (2009).

    Article  Google Scholar 

  73. S. Zaehle, A. D. Friend, P. Friedlingstein, et al., “Carbon and Nitrogen Cycle Dynamics in the O-CN Land Surface Model: 2. Role of the Nitrogen Cycle in the Historical Terrestrial Carbon Balance,” Glob. Biogeochem. Cycles 24(1), GB1006 (2010).

    Article  Google Scholar 

  74. Yu. A. Izrael’, S. M. Semenov, I. M. Kunina, et al., “Modifikatsiya pryamogo effekta dioksila ugleroda na vysshie rasteniya vsledstvie vozdeistviya troposfernogo ozona,” Dokl. Akad. Nauk 338(5), 711–713 (1994).

    Google Scholar 

  75. S. M. Semenov, I. M. Kunina, and B. A. Kukhta, “Comparison of Anthropogenic Changes in Surface Concentrations O3, SO2, and CO2 in Europe on the Basis of Environmental Criteria,” Dokl. Akad. Nauk 361(2), 275–279 (1998).

    Google Scholar 

  76. J. C. I. Kuylenstierna, H. Rodhe, S. Cinderby, et al., “Acidification in Developing Countries: Ecosystem Sensitivity and the Critical Load Approach on a Global Scale,” Ambio 30(1), 20–28 (2001).

    Google Scholar 

  77. S. Sitch, P. M. Cox, W. J. Collins, et al., “Indirect Radiative Forcing of Climate Change through Ozone Effects on the Land-Carbon Sink,” Nature 448(7155), 791–794 (2007).

    Article  Google Scholar 

  78. V. K. Arora and H. D. Matthews, “Characterizing Uncertainty in Modeling Primary Terrestrial Ecosystem Processes,” Glob. Biogeochem. Cycles 23(2), GB2016 (2009).

    Article  Google Scholar 

  79. S. Manabe, M. J. Spelman, and R. J. Stouffer, “Transient Responses of a Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric CO2,” J. Clim. 5(2), 105–126 (1992).

    Article  Google Scholar 

  80. I. I. Mokhov and A. V. Eliseev, “Tropospheric and Stratospheric Temperature Annual Cycle: Tendencies of Change,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 33, 452–463 (1997) [Izv., Atmos. Ocean. Phys. 33, 415–426 (1997)].

    Google Scholar 

  81. P. D. Jones, M. New, D. E. Parker, et al., “Surface Air Temperature and Its Changes over the Past 150 years,” Rev. Geophys. 37(2), 173–199 (1999).

    Article  Google Scholar 

  82. J. Hansen, R. Ruedy, J. Glascoe, et al., “GISS Analysis of Surface Temperature Change,” J. Geophys. Res. 104(D24), 30997–31022 (1999).

    Article  Google Scholar 

  83. S. M. Semenov and E. S. Gel’ver, “Changes in the Annual Cycle of Daily Average Air Temperature in Russia in the XX Century,” Dokl. Akad. Nauk 386(3), 389–394 (2002).

    Google Scholar 

  84. J. Räisänen, “CO2-Induced Climate Change in CMIP2 Experiments: Quantification of Agreement and Role of Internal Variability,” J. Clim. 14(9), 2088–2104 (2001).

    Article  Google Scholar 

  85. C. J. Wallace and T. J. Osborn, “Recent and Future Modulation of the Annual Cycle,” Clim. Res. 22(1), 1–11 (2002).

    Article  Google Scholar 

  86. A. V. Eliseev and I. I. Mokhov, “Amplitude-Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere,” Adv. Atmos. Sci. 20(1), 1–16 (2003).

    Google Scholar 

  87. A. V. Eliseev, I. I. Mokhov, and M. S. Guseva, “Sensitivity of Amplitude-Phase Characteristics of the Surface Air Temperature Annual Cycle to Variations in Annual Mean Temperature,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 42, 326–340 (2006) [Izv., Atmos. Ocean. Phys. 42, 300–312 (2006)].

    Google Scholar 

  88. I. I. Mokhov and A. V. Eliseev, Encyclopedia of Ecology, Ed. by S. E. Jorgensen and B. Fath (Elsevier, Amsterdam, 2008), pp. 598–602.

    Chapter  Google Scholar 

  89. R. A. Monserud and R. Leemans, “Comparing Global Vegetation Maps with the Kappa Statistic,” Ecol. Mod. 62(4), 275–293 (1992).

    Article  Google Scholar 

  90. N. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle of Ash Elements and Nitrogen in the Major Vegetation Types of the World (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  91. A. A. Titlyanova, Biological Carbon Cycle in Herbaceous Biogeocenoses (Nauka, Novosibirsk, 1977) [in Russian].

    Google Scholar 

  92. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  93. N. I. Bazilevich and A. A. Titlyanova, Biotic Turnover on the Five Continents: Nitrogen and Ash Elements in Natural Terrestrial Ecosystems (Izd. SO RAN, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  94. P. M. Cox, Description of the TRIFFID Dynamic Global Vegetation Model, Hadley Centre Technical Note 24 (Hadley Centre, Met. Office, Bracknell, 2000).

    Google Scholar 

  95. Yu. M. Svirezhev and W. von Bloh, “Climate, Vegetation, and Global Carbon Cycle: The Simplest Zero-Dimensional Model,” Ecol. Mod. 101, 79–95 (1997).

    Article  Google Scholar 

  96. A. Adams, A. White, and T. M. Lenton, “An Analysis of Some Diverse Approaches to Modelling Terrestrial Net Primary Productivity,” Ecol. Mod. 177, 353–391 (2004).

    Article  Google Scholar 

  97. M. S. Williamson, T. M. Lenton, J. G. Shepherd, et al., “An Efficient Numerical Terrestrial Scheme (ENTS) for Earth System Modelling,” Ecol. Mod. 198, 362–374 (2006).

    Article  Google Scholar 

  98. K. Thonicke, S. Venevsky, S. Sitch, et al., “The Role of Fire Disturbance for Global Vegetation Dynamics: Coupling Fire Into a Dynamic Global Vegetation Model,” Glob. Ecol. Biogeogr. 10(6), 661–677 (2001).

    Article  Google Scholar 

  99. V. Brovkin, S. Sitch, W. von Bloh, et al., “Role of Land Cover Changes for Atmospheric CO2 Increase and Climate Change during the Last 150 years,” Glob. Change Biol. 10, 1253–1266 (2004).

    Article  Google Scholar 

  100. R. A. Houghton, J. E. Hobbie, J. M. Melillo, et al., “Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO2 to the Atmosphere,” Ecol. Monographs 53(3), 235–262 (1983).

    Article  Google Scholar 

  101. P. Brohan, J. J. Kennedy, I. Harris, et al., “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850,” J. Geophys. Res. 111(D12), D12106 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Eliseev.

Additional information

Original Russian Text © A.V. Eliseev, 2011, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2011, Vol. 47, No. 2, pp. 147–170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, A.V. Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values. Izv. Atmos. Ocean. Phys. 47, 131–153 (2011). https://doi.org/10.1134/S0001433811020046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433811020046

Keywords

Navigation