Skip to main content
Log in

Hyper-Resistance of the Bacillus licheniformis 24 Strain to Oxidative Stress Is Associated with Overexpression of Enzymatic Antioxidant System Genes

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

At the International Space Station (ISS), artificial living conditions are created and maintained to satisfy human needs, these conditions are also favorable for the growth of numerous microorganisms, molds and bacteria. Among the microorganisms detected on the ISS are those from the automicroflora of crew members, and a significant number of spore-forming bacteria. In most cases, this group of microorganisms gives rise to strains that are able to colonize, grow and reproduce on interior materials and equipment of stations, and may be involved in biodestructive processes. These bacteria show increased resistance to various stress factors, for example, DNA-damaging and oxidizing agents. The molecular mechanisms of this resistance to stress are poorly understood. As part of the sanitary-microbiological monitoring of the ISS habitat, the Bacillus licheniformis 24 strain was isolated. Here, we demonstrated that this strain has increased resistance to hydrogen peroxide and Paraquat when compared to the “terrestrial” B. licheniformis B-10956 strain. B. licheniformis 24 overexpressed genes encoding enzymes that neutralize reactive oxygen species, such as KatX catalase and the superoxide dismutases SodA and SodF. Apart from this, in comparison with B. licheniformis B-10956, of B. licheniformis 24 cells had lower hydrogen sulfide production that was associated with sharply reduced expression of the cysIJ operon that encodes sulfite reductase. The results indicate that enzymatic antioxidant protective systems make a more significant contribution to the hyper-resistance of Bacillus strains to oxidizing agents than components of non-enzymatic systems, such as hydrogen sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Horneck G., Klaus D.M., Mancinelli R.L. 2010. Space microbiology. Microbiol. Mol. Biol. Rev.74, 121‒156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kempf M.J., Chen F., Kern R., Venkateswaran K. 2005. Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology. 5, 391–405.

    Article  CAS  PubMed  Google Scholar 

  3. Gioia J., Yerrapragada S., Qin X., Jiang H., Igboeli O.C., Muzny D., Dugan-Rocha S., Ding Y., Hawes A., Liu W., Perez L., Kovar C., Dinh H., Lee S., Nazareth L., et al. 2007. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS One. 2, e928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Novikova N.D., Polikarpov N.A., Poddubko S.V., Deshevaya E.A. 2001. The results of microbiological research of environmental microflora of orbital station MIR. Proceedings of the 31st International Conference on Environmental Systems, Orlando, FL, USA, (2001), #2001-2001-2310.

  5. Pierson D.L., McGinnis M.R., Viktorov A.N. 1994. Micobiological contamination. In Space Biology and Medicine, vol. 2: Life Support and Habitability. Sulzman F.M., Genin A.M., Eds. Washington, DC: American Institute of Aeronautics and Astronautics, pp. 77–93.

  6. Lang J.M., Coil D.A., Neches R.Y., Brown W.E., Cavalier D., Severance M., Hampton-Marcell J.T., Gilbert J.A., Eisen J.A. 2017. A microbial survey of the International Space Station (ISS). Peer J.5, e4029.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Novikova N.D., Pierson D.L., Poddubko S.V., Deshevaya E.A., Ott S.M., Castro V.A., and Bruce R.D. 2009. Microbiology of the International Space Station. In U.S. and Russian Cooperation in Space Biology and Medicine, vol. 5. Sawin C.F., Hanson S.I., House N., Pestov I.D., Eds. Reston, VA: American Institute of Aeronautics and Astronautics, pp. 263–278.

    Google Scholar 

  8. Ichijo T., Yamaguchi N., Tanigaki F., Shirakawa M., Nasu M. 2016. Four-year bacterial monitoring in the International space station-Japanese experiment module “Kibo” with culture-independent approach. NPJ Microgravity. 2, 16007.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Karpov D.S., Domashin A.I., Kotlov M.I., Osipova P.D., Kiseleva S.V., Seregina T.A., Goncharenko A.V., Mironov A.S., Karpov V.L., Poddubko S.V. 2020. Biotechnological potential of the Bacillus subtilis 20 strain. Mol. Biol. (Moscow). 54 (1), 119‒127

    Article  CAS  Google Scholar 

  10. Baranov V.M., Novikova N.D., Polikarpov N.A., Sychev V.N., Levinskikh M.A., Alekseev V.R., Okuda T., Sugimoto M., Gusev O.A., Grigor’ev A.I. 2009. The Biorisk Experiment: 13-Month exposure of resting forms of organismы on the outer side of the Russian segment of the International Space Station: Preliminary results. Dokl. Biol. Sci.426, 267–270.

    Article  CAS  PubMed  Google Scholar 

  11. Novikova N.D., Polikarpov N.A., Deshevaya E.A., Svistunova Yu.V., Grigor’ev A.I. 2007. Results of the experiment with extended exposure of microorganisms in open space. Aviakosm. Ekol. Med.41, 14‒20.

    CAS  Google Scholar 

  12. Sauer S., Freiwald A., Maier T., Kube M., Reinhardt R., Kostrzewa M., Geider K. 2008. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One. 3, e2843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Clark C.M., Costa M.S., Sanchez L.M., Murphy B.T. 2018. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc. Natl. Acad. Sci. U. S. A.115, 4981‒4986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felsenstein J., Sinauer A. 2007. Inferring Phylogenies. Sunderland, MA: Sinauer Assoc.

    Google Scholar 

  15. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547‒1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chambers M.C., Maclean B., Burke R., Amodei D., Ruderman D.L., Neumann S., Gatto L., Fischer B., Pratt B., Egertson J., Hoff K., Kessner D., Tasman N., Shulman N., Frewen B., et al. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol.30, 918–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niedermeyer T.H., Strohalm M. 2012. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS One. 7, e44913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu D., Cote J.-C. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 39 end 16S rDNA and 5' end 16S–23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53, 695–704.

    Article  CAS  PubMed  Google Scholar 

  19. Velho R.V., Caldas D.G., Medina L.F., Tsai S.M., Brandelli A. 2011. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett. Appl. Microbiol. 52, 660‒666.

    Article  CAS  PubMed  Google Scholar 

  20. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406‒3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McWilliam H., Li W., Uludag M., Squizzato S., Park Y.M., Buso N., Cowley A.P., Lopez R. 2013. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597‒W600.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bourque S.N., Valero J.R., Lavoie M.C., Levesque R.C. 1995. Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl. Environ. Microbiol. 61, 1623–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strejcek M., Smrhova T., Junkova P., Uhlik O. 2018. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol.9, 1294.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee J.W., Helmann J.D. 2006. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature. 440, 363–367.

    Article  CAS  PubMed  Google Scholar 

  25. Bagyan I., Casillas-Martinez L., Setlow P. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by sigmaF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol.180, 2057–2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walling C. 1975. Fenton’s reagent revisited. Acc. Chem. Res.8, 125–131.

    Article  CAS  Google Scholar 

  27. Faulkner M.J., Helmann J.D. 2011. Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid. Redox. Signal.15, 175–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinochet-Barros A., Helmann J.D. 2018. Redox sensing by Fe(2+) in bacterial Fur family metalloregulators. Antioxid. Redox. Signal.29, 1858–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiancone E., Ceci P. 2010. The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim. Biophys Acta. 1800, 798–805.

    Article  CAS  PubMed  Google Scholar 

  30. Jimenez-Del-Rio M., Suarez-Cedeno G., Velez-Pardo C. 2010. Using paraquat to generate anion free radicals and hydrogen peroxide in in vitro: Antioxidant effect of vitamin E: A procedure to teach theoretical and experimental principles of reactive oxygen species biochemistry. Biochem. Mol. Biol. Educ.38, 104–109.

    Article  CAS  PubMed  Google Scholar 

  31. Samai M., Sharpe M.A., Gard P.R., Chatterjee P.K. 2007. Comparison of the effects of the superoxide dismutase mimetics EUK-134 and tempol on paraquat-induced nephrotoxicity. Free Radic. Biol. Med.43, 528–534.

    Article  CAS  PubMed  Google Scholar 

  32. Shu L.J., Yang Y.L. 2017. Bacillus classification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry-effects of culture conditions. Sci. Rep.7, 15546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Inaoka T., Matsumura Y., Tsuchido T. 1999. SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis.J. Bacteriol. 181, 1939‒1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nagy P., Winterbourn C.C. 2010. Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem. Res. Ttoxicol. 23, 1541‒1543.

    Article  CAS  Google Scholar 

  35. Li K., Xin Y., Xuan G., Zhao R., Liu H., Xia Y., Xun L. 2019. Escherichia coli uses separate enzymes to produce H2S and reactive sulfane sulfur from L-cysteine. Front. Microbiol. 10, 298.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Auger S., Yuen W.H., Danchin A., Martin-Verstraete I. 2002. The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Microbiology. 148, 507–518.

    Article  CAS  PubMed  Google Scholar 

  37. Lomax M.E., Gulston M.K., O’Neill P. 2002. Chemical aspects of clustered DNA damage induction by ionising radiation. Radiat. Prot. Dosimetry. 99, 63–68.

    Article  CAS  PubMed  Google Scholar 

  38. Riezzo I., Cerretani D., Fiore C., Bello S., Centini F., D’Errico S., Fiaschi A.I., Giorgi G., Neri M., Pomara C., Turillazzi E., Fineschi V. 2010. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J. Neurosci. Res. 88, 905–916.

    CAS  PubMed  Google Scholar 

  39. Panda S.K. 2012. Assay Guided Comparison for Enzymatic and Non-enzymatic Antioxidant Activities with Special Reference to Medicinal Plants. IntechOpen. https://www.intechopen.com/books/antioxidant-enzyme/assay-guided-comparison-for-enzymatic-and-non-enzymatic-antioxidant-activities-with-special-reference.

  40. Abel C.-G., Emmanuel A.-H., Irasema V.-A., Miguel Angel M.-T. 2012. Oligoglucan Elicitor Effects during Plant Oxidative Stress. IntechOpen. https://www.intechopen. com/books/cell-metabolism-cell-homeostasis-and-stress-response/oligoglucan-elicitor-effects-during-plant-oxidative-stress.

  41. Mironov A., Seregina T., Nagornykh M., Luhachack L.G., Korolkova N., Lopes L.E., Kotova V., Zavilgelsky G., Shakulov R., Shatalin K., Nudler E. 2017. Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli.Proc. Natl. Acad. Sci. U. S. A.114, 6022–6027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu G., Wan F., Fu H., Li N., Gao H. 2015. A matter of timing: Contrasting effects of hydrogen sulfide on oxidative stress response in Shewanella oneidensis.J. Bacteriol. 197, 3563–3572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nicholson W.L., Moeller R., Team P., Horneck G. 2012. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT. Astrobiology. 12, 469–486.

    Article  CAS  PubMed  Google Scholar 

  44. Moeller R., Raguse M., Reitz G., Okayasu R., Li Z., Klein S., Setlow P., Nicholson W.L. 2014. Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Appl. Environ. Microbiol. 80, 104–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Varghese S., Wu A., Park S., Imlay K.R., Imlay J.A. 2007. Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli.Mol. Microbiol. 64, 822–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schroeter R., Voigt B., Jurgen B., Methling K., Pother D.C., Schafer H., Albrecht D., Mostertz J., Mader U., Evers S., Maurer K.H., Lalk M., Mascher T., Hecker M., Schweder T. 2011. The peroxide stress response of Bacillus licheniformis.Proteomics. 11, 2851–2866.

    Article  CAS  PubMed  Google Scholar 

  47. Tirumalai M.R., Rastogi R., Zamani N., O’Bryant Williams E., Allen S., Diouf F., Kwende S., Weinstock G.M., Venkateswaran K.J., Fox G.E. 2013. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS One. 8, e66012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tirumalai M.R., Stepanov V.G., Wunsche A., Montazari S., Gonzalez R.O., Venkateswaran K., Fox G.E. 2018. Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: A whole genome comparison of two spacecraft assembly facility isolates. BMC Microbiol. 18, 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was partially performed using the equipment of the Engelhardt Institute of Molecular Biology of RAS Collective Use Center “Genome” (http://www.eimb.ru/ RUSSIAN_NEW/INSTITUTE/ccu_genome_c.php).

Funding

This work was supported by the Russian Science Foundation (project no. 17-74-30030) (Table 1, Figs. 3‒5), Russian Foundation for Basic Research (project no. 18-29-07021) (Fig. 2), grant no. 075-15-2019-1660 from the Ministry of Science and Higher Education of the Russian Federation (Table 2), Programs of the Russian Academy of Sciences no. 01201367566 (Fig. 1) and no. 01201373016 (Table 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Karpov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interests.

This article does not contain any studies with the use of animals as objects of research.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, D.S., Osipova, P.G., Domashin, A.I. et al. Hyper-Resistance of the Bacillus licheniformis 24 Strain to Oxidative Stress Is Associated with Overexpression of Enzymatic Antioxidant System Genes. Mol Biol 54, 757–768 (2020). https://doi.org/10.1134/S0026893320050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320050040

Keywords:

Navigation