Inverse-Compton scattering of the cosmic infrared background

Alina Sabyr, J. Colin Hill, and Boris Bolliet
Phys. Rev. D 106, 023529 – Published 27 July 2022

Abstract

The thermal Sunyaev-Zel’dovich (tSZ) effect is the distortion generated in the cosmic microwave background (CMB) spectrum by the inverse-Compton scattering of CMB photons off free, energetic electrons, primarily located in the intracluster medium. Cosmic infrared background (CIB) photons from thermal dust emission in star-forming galaxies are expected to undergo the same process. In this work, we perform the first calculation of the resulting tSZ-like distortion in the CIB. Focusing on the CIB monopole, we use a halo model approach to calculate both the CIB signal and the Compton-y field that generates the distortion. We self-consistently account for the redshift coevolution of the CIB and Compton-y fields: they are (partially) sourced by the same dark matter halos, which introduces new aspects to the calculation as compared to the CMB case. We find that the inverse-Compton distortion to the CIB monopole spectrum has a positive (negative) peak amplitude of 4Jy/sr (5Jy/sr) at 2260 GHz (940 GHz). In contrast to the usual tSZ effect, the distortion to the CIB spectrum has two null frequencies, at approximately 196 and 1490 GHz. We perform a Fisher matrix calculation to forecast the detectability of this new distortion signal by future experiments. PIXIE would have sufficient instrumental sensitivity to detect the signal at 4σ, but foreground contamination reduces the projected signal-to-noise by a factor of 70. A future ESA Voyage 2050 spectrometer could detect the CIB distortion at 5σ significance, even after marginalizing over foregrounds. A measurement of this signal would provide new information on the star formation history of the Universe, and the distortion anisotropies may be accessible by near-future ground-based experiments.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 25 April 2022
  • Accepted 21 June 2022

DOI:https://doi.org/10.1103/PhysRevD.106.023529

© 2022 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Alina Sabyr1,*, J. Colin Hill2,3, and Boris Bolliet2

  • 1Department of Astronomy, Columbia University, New York, New York, USA 10027
  • 2Department of Physics, Columbia University, New York, New York, USA 10027
  • 3Center for Computational Astrophysics, Flatiron Institute, New York, New York, USA 10010

  • *as6131@columbia.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 2 — 15 July 2022

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×