Population III star explosions and Planck 2018 data

Katsuya T. Abe and Hiroyuki Tashiro
Phys. Rev. D 103, 123543 – Published 24 June 2021

Abstract

We investigate the effect of the population III (Pop III) stars supernova explosion (SN) on the high redshifts reionization history using the latest Planck data. It is predicted that massive Pop III stars (130MM270M) explode energetically at the end of their stellar life as pair-instability supernovae (PISNe). In the explosion, supernova remnants grow as hot ionized bubbles and enhance the ionization fraction in the early stage of the reionization history. This enhancement affects the optical depth of the cosmic microwave background (CMB) and generates the additional anisotropy of the CMB polarization on large scales. Therefore, analyzing the Planck polarization data allows us to examine the Pop III star SNe and the abundance of their progenitors, massive Pop III stars. In order to model the supernova(SN) contribution to reionization, we introduce a new parameter ζ, which relates to the abundance of the SNe to the collapse fraction of the Universe. Using the Markov chain Monte Carlo method with the latest Planck polarization data, we obtain the constraint on our model parameter, ζ. Our constraint tells us that observed CMB polarization is consistent with the abundance of PISNe predicted from the star formation rate and initial mass function of Pop III stars in recent cosmological simulations. We also suggest that combining further observations on the late reionization history, such as high redshift quasi-stellar object (QSO) observations, can provide tighter constraints and important information on the nature of Pop III stars.

  • Figure
  • Figure
  • Figure
  • Received 18 March 2021
  • Accepted 26 May 2021

DOI:https://doi.org/10.1103/PhysRevD.103.123543

© 2021 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Katsuya T. Abe* and Hiroyuki Tashiro

  • Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

  • *abe.katsuya@e.mbox.nagoya-u.ac.jp

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 103, Iss. 12 — 15 June 2021

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×