Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Recommendation
  • Published:

SenNet recommendations for detecting senescent cells in different tissues

Abstract

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hallmarks of cellular senescence.

Similar content being viewed by others

References

  1. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  PubMed  Google Scholar 

  3. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  Google Scholar 

  5. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karin, O., Agrawal, A., Porat, Z., Krizhanovsky, V. & Alon, U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat. Commun. 10, 5495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Onorati, A. et al. Upregulation of PD-L1 in senescence and aging. Mol. Cell. Biol. 42, e0017122 (2022).

    Article  PubMed  Google Scholar 

  10. Wang, T.-W. et al. Blocking PD-L1–PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. SenNet Consortium NIH SenNet Consortium to map senescent cells throughout the human lifespan to understand physiological health. Nat. Aging 2, 1090–1100 (2022).

    Article  PubMed Central  Google Scholar 

  12. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes. Dev. 28, 99–114 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lessard, F. et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat. Cell Biol. 20, 789–799 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Fafián-Labora, J. A., Rodríguez-Navarro, J. A. & O’Loghlen, A. Small extracellular vesicles have GST activity and ameliorate senescence-related tissue damage. Cell Metab. 32, 71–86.e5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takasugi, M. et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8, 15729 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng, Q. et al. Surfaceome analysis of extracellular vesicles from senescent cells uncovers uptake repressor DPP4. Proc. Natl Acad. Sci. USA 120, e2219801120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teo, Y. V. et al. Notch signaling mediates secondary senescence. Cell Rep. 27, 997–1007.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evans S. A. et al. Single-cell transcriptomics reveals global markers of transcriptional diversity across different forms of cellular senescence. AgingBio 1, 1–13 (2023).

    Google Scholar 

  27. Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

    Article  PubMed  Google Scholar 

  29. Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cellular senescence. J. Cell Biol. 203, 929–942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes. Dev. 27, 1787–1799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chandra, T. et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol. Cell 47, 203–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vernier, M. et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes. Dev. 25, 41–50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rouillard, M. E. et al. The cellular senescence factor extracellular HMGB1 directly inhibits oligodendrocyte progenitor cell differentiation and impairs CNS remyelination. Front. Cell. Neurosci. 16, 833186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Althubiti, M. et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 5, e1528 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossi, M. & Abdelmohsen, K. The emergence of senescent surface biomarkers as senotherapeutic targets. Cells 10, 1740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reimann, M. et al. Adaptive T-cell immunity controls senescence-prone MyD88- or CARD11-mutant B-cell lymphomas. Blood 137, 2785–2799 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, H.-A. et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 13, 432–453 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Biran, A. et al. Senescent cells communicate via intercellular protein transfer. Genes. Dev. 29, 791–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ivanov, A. et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 202, 129–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, J. T., Lee, Y.-S., Cho, K. A. & Park, S. C. Adjustment of the lysosomal–mitochondrial axis for control of cellular senescence. Ageing Res. Rev. 47, 176–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Evangelou, K. & Gorgoulis, V. G. Sudan Black B, the specific histochemical stain for lipofuscin: a novel method to detect senescent cells. Methods Mol. Biol. 1534, 111–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Quijano, C. et al. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 11, 1383–1392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Dörr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013).

    Article  PubMed  Google Scholar 

  47. Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. 132, e158447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, A. et al. Mitogenic signalling and the p16INK4a–Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 8, 1291–1297 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Victorelli, S. & Passos, J. F. Reactive oxygen species detection in senescent cells. Methods Mol. Biol. 1896, 21–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. von Zglinicki, T., Saretzki, G., Ladhoff, J., d’Adda di Fagagna, F. & Jackson, S. P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 126, 111–117 (2005).

    Article  Google Scholar 

  53. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  PubMed  Google Scholar 

  54. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  PubMed  Google Scholar 

  55. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Doolittle, M. L. et al. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat. Commun. 14, 4587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, N., Huna, A., Tsalikis, A. & Bernard, D. Revisiting sensitivity of senescent cells to BH3 mimetics. Trends Pharmacol. Sci. 45, 287–289 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Gasek, N. S., Kuchel, G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ogrodnik, M., Salmonowicz, H., Jurk, D. & Passos, J. F. Expansion and cell-cycle arrest: common denominators of cellular senescence. Trends Biochem. Sci. 44, 996–1008 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martini, H. et al. Aging induces cardiac mesenchymal stromal cell senescence and promotes endothelial cell fate of the CD90+ subset. Aging Cell 18, e13015 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lewis-McDougall, F. C. et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bhayadia, R., Schmidt, B. M., Melk, A. & Homme, M. Senescence-induced oxidative stress causes endothelial dysfunction. J. Gerontol. A Biol. Sci. Med. Sci. 71, 161–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Gao, P. et al. Transcriptome analysis of mouse aortae reveals multiple novel pathways regulated by aging. Aging 12, 15603–15623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, H. et al. Role of the cGAS–STING pathway in aging-related endothelial dysfunction. Aging Dis. 13, 1901–1918 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bloom, S. I. et al. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions. Geroscience 44, 2741–2755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walaszczyk, A. et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 18, e12945 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhu, F. et al. Senescent cardiac fibroblast is critical for cardiac fibrosis after myocardial infarction. PLoS ONE 8, e74535 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aschacher, T. et al. Impacts of telomeric length, chronic hypoxia, senescence, and senescence-associated secretory phenotype on the development of thoracic aortic aneurysm. Int. J. Mol. Sci. 23, 15498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, H. Z. et al. Age-associated sirtuin 1 reduction in vascular smooth muscle links vascular senescence and inflammation to abdominal aortic aneurysm. Circ. Res. 119, 1076–1088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matthews, C. et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ. Res. 99, 156–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Weiskopf, D., Weinberger, B. & Grubeck-Loebenstein, B. The aging of the immune system. Transpl. Int. 22, 1041–1050 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Martínez-Zamudio, R. I. et al. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell 20, e13344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goldberg, E. L. & Dixit, V. D. Drivers of age-related inflammation and strategies for healthspan extension. Immunol. Rev. 265, 63–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Park, M. D., Silvin, A., Ginhoux, F. & Merad, M. Macrophages in health and disease. Cell 185, 4259–4279 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hall, B. M. et al. p16Ink4a and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Goldberg, E. L. et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. 33, 2277–2287.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Konstorum, A. et al. Platelet response to influenza vaccination reflects effects of aging. Aging Cell 22, e13749 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Callender, L. A. et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17, e12675 (2018).

    Article  PubMed  Google Scholar 

  82. Guan, L., Crasta, K. C. & Maier, A. B. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res. Rev. 78, 101634 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Zhou, D., Borsa, M. & Simon, A. K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 20, e13316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Liu, Y. et al. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8, 439–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Wilk, C. M. et al. Circulating senescent myeloid cells infiltrate the brain and cause neurodegeneration in histiocytic disorders. Immunity 56, 2790–2802.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Farr, J. N. et al. Identification of senescent cells in the bone microenvironment. J. Bone Miner. Res. 31, 1920–1929 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Abdul-Aziz, A. M. et al. Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood 133, 446–456 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ding, P. et al. Osteocytes regulate senescence of bone and bone marrow. eLife 11, e81480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, C. J. et al. Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab. 33, 1957–1973.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Biavasco, R. et al. Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis. Nat. Commun. 12, 4559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bigenwald, C. et al. BRAFV600E-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nat. Med. 27, 851–861 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Kiss, T. et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 42, 429–444 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jin, W. N. et al. Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat. Neurosci. 24, 61–73 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Ogrodnik, M. et al. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20, e13296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fatt, M. P. et al. Restoration of hippocampal neural precursor function by ablation of senescent cells in the aging stem cell niche. Stem Cell Rep. 17, 259–275 (2022).

    Article  CAS  Google Scholar 

  104. Zhang, X. et al. Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance. Nat. Commun. 13, 5671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Matias, I. et al. Loss of lamin-B1 and defective nuclear morphology are hallmarks of astrocyte senescence in vitro and in the aging human hippocampus. Aging Cell 21, e13521 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 22, 930–940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dong, C. et al. ATM modulates subventricular zone neural stem cell maintenance and senescence through Notch signaling pathway. Stem Cell Res. 58, 102618 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, P. et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bhat, R. et al. Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7, e45069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hu, Y. et al. Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology. Cell Rep. 35, 109228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gaikwad, S. et al. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer’s disease and frontotemporal dementia. Cell Rep. 36, 109419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dehkordi, S. K. et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat. Aging 1, 1107–1116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bryant, A. G. et al. Cerebrovascular senescence is associated with tau pathology in Alzheimer’s disease. Front. Neurol. 11, 575953 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Brichta, L. et al. Identification of neurodegenerative factors using translatome-regulatory network analysis. Nat. Neurosci. 18, 1325–1333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Turnquist, C. et al. Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro. Oncol. 21, 474–485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, J. K. et al. Chronic alcohol metabolism results in DNA repair infidelity and cell cycle-induced senescence in neurons. Aging Cell 22, e13772 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wang, L. et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 34, 75–89.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Choudhery, M. S., Badowski, M., Muise, A., Pierce, J. & Harris, D. T. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J. Transl. Med. 12, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang, B. et al. Transplanting cells from old but not young donors causes physical dysfunction in older recipients. Aging Cell 19, e13106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962–973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Li, Q. et al. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat. Med. 27, 1941–1953 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat. Metab. 2, 1284–1304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shirakawa, K. et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Invest. 126, 4626–4639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Colón-Mesa, I. et al. Regulation of p27 and cdk2 expression in different adipose tissue depots in aging and obesity. Int. J. Mol. Sci. 22, 11745 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Song, H. D. et al. Aging-induced brain-derived neurotrophic factor in adipocyte progenitors contributes to adipose tissue dysfunction. Aging Dis. 11, 575–587 (2020).

    Article  PubMed  Google Scholar 

  131. Wang, J. et al. Deletion of Nrip1 extends female mice longevity, increases autophagy, and delays cell senescence. J. Gerontol. A Biol. Sci. Med. Sci. 73, 882–892 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moreno-Navarrete, J. M. et al. DBC1 is involved in adipocyte inflammation and is a possible marker of human adipose tissue senescence. Obesity 23, 519–522 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Ullah, M. & Sun, Z. Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1396–1407 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Khanh, V. C. et al. Aging impairs beige adipocyte differentiation of mesenchymal stem cells via the reduced expression of Sirtuin 1. Biochem. Biophys. Res. Commun. 500, 682–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, G. et al. SREBP1c–PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab. 34, 702–718.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Moon, J. S. et al. Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice. Aging Cell 19, e13195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, Z. et al. The dysfunctional MDM2–p53 axis in adipocytes contributes to aging-related metabolic complications by induction of lipodystrophy. Diabetes 67, 2397–2409 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Wei, Z. et al. Pan-senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence. Free. Radic. Biol. Med. 130, 267–277 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Qiu, X. et al. Down-regulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages. Sci. Rep. 8, 1679 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cohen, C. et al. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol. Med. 13, e14146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Prattichizzo, F. et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol. 15, 170–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Fang, Y. et al. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J. Clin. Invest. 132, e141848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, L. et al. C/EBP�� deficiency in podocytes aggravates podocyte senescence and kidney injury in aging mice. Cell Death Dis. 10, 684 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sis, B. et al. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int. 71, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Kitada, K. et al. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J. Diabetes Complications 28, 604–611 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 295, F1563–F1573 (2008).

    Article  CAS  Google Scholar 

  148. Satriano, J. et al. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am. J. Physiol. Cell Physiol. 299, C374–C380 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, S. R. et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells. J. Cell. Physiol. 236, 1332–1344 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Westhoff, J. H. et al. Telomere shortening reduces regenerative capacity after acute kidney injury. J. Am. Soc. Nephrol. 21, 327–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Melk, A. et al. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int. 65, 510–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Chkhotua, A. B. et al. Increased expression of p16INK4a and p27Kip1 cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am. J. Kidney Dis. 41, 1303–1313 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Melk, A. et al. Telomere shortening in kidneys with age. J. Am. Soc. Nephrol. 11, 444–453 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Luo, C. et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J. Am. Soc. Nephrol. 29, 1238–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Maus, M. et al. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype. Nat. Metab. 5, 2111–2130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang, C. et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8, 311–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Aravinthan, A. et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58, 549–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Wilson, C. L. et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat. Commun. 6, 6818 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cheng, N., Kim, K. H. & Lau, L. F. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 7, e158207 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2−/−) mice. Hepatology 67, 247–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Kaur, G., Sundar, I. K. & Rahman, I. p16-3MR: a novel model to study cellular senescence in cigarette smoke-induced lung injuries. Int. J. Mol. Sci. 22, 4834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Reyes, N. S. et al. Sentinel p16INK4a+ cells in the basement membrane form a reparative niche in the lung. Science 378, 192–201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yao, H. et al. Timing and cell specificity of senescence drives postnatal lung development and injury. Nat. Commun. 14, 273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kobayashi, Y. et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22, 934–946 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jiang, C. et al. Serpine 1 induces alveolar type II cell senescence through activating p53–p21–Rb pathway in fibrotic lung disease. Aging Cell 16, 1114–1124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chen, H. et al. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp. Mol. Med. 52, 130–151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhong, W. et al. Extracellular HSP90α promotes cellular senescence by modulating TGF-β signaling in pulmonary fibrosis. FASEB J. 36, e22475 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Parikh, P. et al. Cellular senescence in the lung across the age spectrum. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L826–L842 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Aghali, A. et al. Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 323, L558–L568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kuźnar-Kamińska, B. et al. Serum from patients with chronic obstructive pulmonary disease induces senescence-related phenotype in bronchial epithelial cells. Sci. Rep. 8, 12940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Xiaofei, Y., Tingting, L., Xuan, W. & Zhiyi, H. Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K–mTOR signaling pathway in chronic obstructive pulmonary disease. Front. Pharmacol. 13, 1043474 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Cottage, C. T. et al. Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Commun. Biol. 2, 307 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kaur, G., Muthumalage, T. & Rahman, I. Clearance of senescent cells reverts the cigarette smoke-induced lung senescence and airspace enlargement in p16-3MR mice. Aging Cell 22, e13850 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sanders, J. L. et al. The association of aging biomarkers, interstitial lung abnormalities, and mortality. Am. J. Respir. Crit. Care Med. 203, 1149–1157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sanders, Y. Y. et al. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur. Respir. J. 43, 1448–1458 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Aguayo-Mazzucato, C. et al. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129–142.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Midha, A. et al. Unique human and mouse β-cell senescence-associated secretory phenotype (SASP) reveal conserved signaling pathways and heterogeneous factors. Diabetes 70, 1098–1116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Thompson, P. J. et al. Targeted elimination of senescent β cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Walker, E. M. et al. Sex-biased islet β cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males. Cell Rep. 37, 109813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rubin de Celis, M. F. et al. PAHSAs reduce cellular senescence and protect pancreatic β cells from metabolic stress through regulation of Mdm2/p53. Proc. Natl Acad. Sci. USA 119, e2206923119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Brawerman, G., Ntranos, V. & Thompson, P. J. ɑ cell dysfunction in type 1 diabetes is independent of a senescence program. Front. Endocrinol. 13, 932516 (2022).

    Article  Google Scholar 

  188. Pinho, A. V. et al. Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis. Gut 60, 958–966 (2011).

    Article  CAS  PubMed  Google Scholar 

  189. Rooman, I. & Real, F. X. Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut 61, 449–458 (2012).

    Article  PubMed  Google Scholar 

  190. Grabliauskaite, K. et al. p21WAF1/Cip1 limits senescence and acinar-to-ductal metaplasia formation during pancreatitis. J. Pathol. 235, 502–514 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Horiguchi, M. et al. Senescence caused by inactivation of the homeodomain transcription factor Pdx1 in adult pancreatic acinar cells in mice. FEBS Lett. 593, 2226–2234 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Kim, S. et al. The basic helix–loop–helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas 44, 718–727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tourlakis, M. E. et al. In vivo senescence in the Sbds-deficient murine pancreas: cell-type specific consequences of translation insufficiency. PLoS Genet. 11, e1005288 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Hu, C. et al. The unique pancreatic stellate cell gene expression signatures are associated with the progression from acute to chronic pancreatitis. Comput. Struct. Biotechnol. J. 19, 6375–6385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Luttges, J. et al. Duct changes and K-ras mutations in the disease-free pancreas: analysis of type, age relation and spatial distribution. Virchows Arch. 435, 461–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes. Dev. 17, 3112–3126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Miyasaka, Y. et al. Senescence in intraductal papillary mucinous neoplasm of the pancreas. Hum. Pathol. 42, 2010–2017 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Kim, H.-N. et al. Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice. Aging Cell 18, e12923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Li, C. et al. Programmed cell senescence in skeleton during late puberty. Nat. Commun. 8, 1312 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Saul, D. et al. Modulation of fracture healing by the transient accumulation of senescent cells. eLife 10, e69958 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Liu, J. et al. Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. J. Clin. Invest. 132, e148073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chandra, A. et al. Targeted reduction of senescent cell burden alleviates focal radiotherapy-related bone loss. J. Bone Miner. Res. 35, 1119–1131 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Chandra, A. et al. Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity. Aging Cell 21, e13602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Eckhardt, B. A. et al. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight 5, e135236 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Farr, J. N. et al. Local senolysis in aged mice only partially replicates the benefits of systemic senolysis. J. Clin. Invest. 133, e162519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hudgins, A. D. et al. Age- and tissue-specific expression of senescence biomarkers in mice. Front. Genet. 9, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Dimri, G. P. A biomarker that identifies senescenet human cells in culture and aging skin in vitro. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Contrepois, K. et al. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun. 8, 14995 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Rube, C. E. et al. Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. NPJ Aging Mech. Dis. 7, 7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  212. Waldera Lupa, D. M. et al. Characterization of skin aging-associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J. Invest. Dermatol. 135, 1954–1968 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Victorelli, S. et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 38, e101982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Schafer, M. J. et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5, e133668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Farsam, V. et al. Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget 7, 83554–83569 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Berneburg, M. et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J. Invest. Dermatol. 122, 1277–1283 (2004).

    Article  CAS  PubMed  Google Scholar 

  217. Wang, A. S., Ong, P. F., Chojnowski, A., Clavel, C. & Dreesen, O. Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci. Rep. 7, 15678 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Goorochurn, R. et al. Biological processes in solar lentigo: insights brought by experimental models. Exp. Dermatol. 25, 174–177 (2016).

    Article  PubMed  Google Scholar 

  219. Zhang, K., Anumanthan, G., Scheaffer, S. & Cornelius, L. A. HMGB1/RAGE mediates UVB-induced secretory inflammatory response and resistance to apoptosis in human melanocytes. J. Invest. Dermatol. 139, 202–212 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Jo, K. et al. An anthocyanin-enriched extract from vaccinium uliginosum improves signs of skin aging in UVB-induced photodamage. Antioxidants 9, 844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kong, S. et al. Preparation of cod skin collagen peptides/chitosan-based temperature-sensitive gel and its anti-photoaging effect in skin. Drug. Des. Devel. Ther. 17, 419–437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Quan, T. et al. Dermal fibroblast CCN1 expression in mice recapitulates human skin dermal aging. J. Invest. Dermatol. 141, 1007–1016 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Alimirah, F. et al. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res. 80, 3606–3619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16INK4a-luciferase model. Cell 152, 340–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  226. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nat. Genet. 33, 19–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  227. Hugdahl, E., Kalvenes, M. B., Puntervoll, H. E., Ladstein, R. G. & Akslen, L. A. BRAF-V600E expression in primary nodular melanoma is associated with aggressive tumour features and reduced survival. Br. J. Cancer 114, 801–808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pellegrini, P. et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cell 31, 1954–1965 (2013).

    Article  Google Scholar 

  229. Benitez, S. et al. RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Dev. Cell 56, 1727–1741.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Dong, Q. et al. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential. Aging 8, 2754–2776 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Li, C. M. et al. Aging-associated alterations in mammary epithelia and stroma revealed by single-cell RNA sequencing. Cell Rep. 33, 108566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lemaitre, J. F. & Gaillard, J. M. Reproductive senescence: new perspectives in the wild. Biol. Rev. Camb. Philos. Soc. 92, 2182–2199 (2017).

    Article  PubMed  Google Scholar 

  233. Dong, L., Teh, D. B. L., Kennedy, B. K. & Huang, Z. Unraveling female reproductive senescence to enhance healthy longevity. Cell Res. 33, 11–29 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Briley, S. M. et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction 152, 245–260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lliberos, C. et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice. Sci. Rep. 11, 278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Amargant, F. et al. Ovarian stiffness increases with age in the mammalian ovary and depends on collagen and hyaluronan matrices. Aging Cell 19, e13259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhang, Z., Schlamp, F., Huang, L., Clark, H. & Brayboy, L. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction 159, 325–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ansere, V. A. et al. Cellular hallmarks of aging emerge in the ovary prior to primordial follicle depletion. Mech. Ageing Dev. 194, 111425 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Liu, M. et al. Cell-free fat extract improves ovarian function and fertility in mice with advanced age. Front. Endocrinol. 13, 912648 (2022).

    Article  Google Scholar 

  241. Shen, L. et al. CCL5 secreted by senescent theca-interstitial cells inhibits preantral follicular development via granulosa cellular apoptosis. J. Cell. Physiol. 234, 22554–22564 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Du, D. et al. Senotherapy protects against cisplatin-induced ovarian injury by removing senescent cells and alleviating DNA damage. Oxid. Med. Cell. Longev. 2022, 9144644 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Gao, Y. et al. Increased cellular senescence in doxorubicin-induced murine ovarian injury: effect of senolytics. GeroScience 45, 1775–1790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhu, J. et al. Sirt3 deficiency accelerates ovarian senescence without affecting spermatogenesis in aging mice. Free. Radic. Biol. Med. 193, 511–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  245. Su, X. et al. Effect of Jiajian Guishen Formula on the senescence-associated heterochromatic foci in mouse ovaria after induction of premature ovarian aging by the endocrine-disrupting agent 4-vinylcyclohexene diepoxide. J. Ethnopharmacol. 269, 113720 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Lengyel, E. et al. A molecular atlas of the human postmenopausal fallopian tube and ovary from single-cell RNA and ATAC sequencing. Cell Rep. 41, 111838 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Velicky, P. et al. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet. 14, e1007698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Cindrova-Davies, T., Fogarty, N. M. E., Jones, C. J. P., Kingdom, J. & Burton, G. J. Evidence of oxidative stress-induced senescence in mature, post-mature and pathological human placentas. Placenta 68, 15–22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Higuchi, S. et al. Trophoblast type-specific expression of senescence markers in the human placenta. Placenta 85, 56–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  250. Song, H. L. et al. Appropriate expression of P57kip2 drives trophoblast fusion via cell cycle arrest. Reproduction 161, 633–644 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Zhang, P. et al. p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step. Genes. Dev. 13, 213–224 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chuprin, A. et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes. Dev. 27, 2356–2366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Moore, A. G. et al. The transforming growth factor-β superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women. J. Clin. Endocrinol. Metab. 85, 4781–4788 (2000).

    CAS  PubMed  Google Scholar 

  254. Wang, Y. et al. SIRT1 regulates trophoblast senescence in premature placental aging in preeclampsia. Placenta 122, 56–65 (2022).

    Article  CAS  PubMed  Google Scholar 

  255. Ishikawa, A. et al. Cell fusion mediates dramatic alterations in the actin cytoskeleton, focal adhesions, and E-cadherin in trophoblastic cells. Cytoskeleton 71, 241–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  256. Bartho, L. A., Fisher, J. J., Cuffe, J. S. M. & Perkins, A. V. Mitochondrial transformations in the aging human placenta. Am. J. Physiol. Endocrinol. Metab. 319, E981–E994 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Menon, R. Human fetal membranes at term: dead tissue or signalers of parturition? Placenta 44, 1–5 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Bonney, E. A. et al. Differential senescence in feto-maternal tissues during mouse pregnancy. Placenta 43, 26–34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Cox, L. S. & Redman, C. The role of cellular senescence in ageing of the placenta. Placenta 52, 139–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  260. Wijaya, J. C., Khanabdali, R., Georgiou, H. M. & Kalionis, B. Ageing in human parturition: impetus of the gestation clock in the deciduadagger. Biol. Reprod. 103, 695–710 (2020).

    Article  PubMed  Google Scholar 

  261. Menon, R. et al. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging 8, 216–230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Rajagopalan, S. & Long, E. O. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc. Natl Acad. Sci. USA 109, 20596–20601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Liu, Z. et al. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev. Cell 57, 1347–1368.e12 (2022).

    Article  CAS  PubMed  Google Scholar 

  264. Farfan-Labonne, B., Leff-Gelman, P., Pellon-Diaz, G. & Camacho-Arroyo, I. Cellular senescence in normal and adverse pregnancy. Reprod. Biol. 23, 100734 (2023).

    Article  CAS  PubMed  Google Scholar 

  265. Davy, P., Nagata, M., Bullard, P., Fogelson, N. S. & Allsopp, R. Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 30, 539–542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Guo, Y. et al. Senescence-associated tissue microenvironment promotes colon cancer formation through the secretory factor GDF15. Aging Cell 18, e13013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Faggioli, F., Velarde, M. C. & Wiley, C. D. Cellular senescence, a novel area of investigation for metastatic diseases. Cells 12, 860 (2023).

    Article�� CAS  PubMed  PubMed Central  Google Scholar 

  268. Khosla, S., Farr, J. N., Tchkonia, T. & Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. Nat. Rev. Endocrinol. 16, 263–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  269. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  271. von Zglinicki, T., Wan, T. & Miwa, S. Senescence in post-mitotic cells: a driver of aging? Antioxid. Redox Signal. 34, 308–323 (2021).

    Article  Google Scholar 

  272. Wu, Z., Uhl, B., Gires, O. & Reichel, C. A. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J. Biomed. Sci. 30, 21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Casella, G. et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294–7305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Schleich, K. et al. H3K9me3-mediated epigenetic regulation of senescence in mice predicts outcome of lymphoma patients. Nat. Commun. 11, 3651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jochems, F. et al. The cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 36, 109441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Cherry, C. et al. Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies. Geroscience 45, 2559–2587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Wallis, R. et al. Senescence-associated morphological profiles (SAMPs): an image-based phenotypic profiling method for evaluating the inter and intra model heterogeneity of senescence. Aging 14, 4220–4246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kusumoto, D. et al. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat. Commun. 12, 257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Heckenbach, I. et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat. Aging 2, 742–755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  282. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  283. Basisty, N., Kale, A., Patel, S., Campisi, J. & Schilling, B. The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert. Rev. Proteom. 17, 297–308 (2020).

    Article  CAS  Google Scholar 

  284. Tanaka, T. et al. Plasma proteomic biomarker signature of age predicts health and life span. eLife 9, e61073 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Fielding, R. A. et al. Associations between biomarkers of cellular senescence and physical function in humans: observations from the lifestyle interventions for elders (LIFE) study. Geroscience 44, 2757–2770 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Shin, J. W., Lee, E., Han, S., Choe, S. A. & Jeon, O. H. Plasma proteomic signature of cellular senescence and markers of biological aging among postmenopausal women. Rejuvenation Res. 25, 141–148 (2022).

    Article  CAS  PubMed  Google Scholar 

  288. Wiley, C. D. et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 33, 1124–1136.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Wiley, C. D. et al. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 4, e130056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Borghesan, M. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956–3971.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Covre, L. P., De Maeyer, R. P. H., Gomes, D. C. O. & Akbar, A. N. The role of senescent T cells in immunopathology. Aging Cell 19, e13272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Frasca, D. Senescent B cells in aging and age-related diseases: their role in the regulation of antibody responses. Exp. Gerontol. 107, 55–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  293. Ong, S. M. et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 9, 266 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Walker, K. A., Basisty, N., Wilson, D. M. III & Ferrucci, L. Connecting aging biology and inflammation in the omics era. J. Clin. Invest 132, e158448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Wiley, C. D. et al. SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep. 28, 3329–3337.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Gurkar, A. U. et al. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat. Aging 3, 776–790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Kramer, B. A., Del Castillo, J. S., Pelkmans, L. & Gut, G. Iterative indirect immunofluorescence imaging (4i) on adherent cells and tissue sections. Bio Protoc. 13, e4712 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The National Institutes of Health (NIH) Cellular Senescence Network (SenNet) Consortium mourns the loss of J. Campisi, who passed away unexpectedly in January 2024. Judy always enjoyed her science and her interactions with her mentees, collaborators and colleagues. She would actively participate in all our meetings and contribute with her innovative and creative scientific ideas. Over the past 40 years of Judy’s scientific career, she pioneered research related to cellular senescence and cell fate. Judy truly recognized the relevance of senescence in fundamental aspects of ageing and age-related disease, with a major focus of investigating senescent cells both in model organisms and in humans. With our work in the SenNet Consortium, we hope to take forward her legacy of advancing cellular senescence research and eventually improving human health. The authors thank A. Roy for providing valuable suggestions during the manuscript’s preparation. The manuscript was supported by the following grants: UG3CA268202 (N.N., A. Rocha), R01AG050582 (N.N.), F31AG072748 (A. Rocha), T32GM136566 (A.A.), 1RM1HG011014-01 (S.V.), 1U54AG076040-01 (S.V.), 1U54AG079758-01 (M.G.T., P.D.A., Q.Z., S.Y.), 23CDA1056892 (S. Suvakov), Hevloution/AFAR (D.J.), R01AG68048 (J.F.P.), R01AG82708 (J.F.P.), AG068182 (D.J.), UG3CA268103 (J.F.P.), P01 AG062413 (S. Khosla, J.F.P.), P30AG067988 (G.A.K.), R01 AG069819 (D.A.B.), R01 AG076515 (S. Khosla), R33AG061456 (G.A.K.), U19AI089992 (R.R.M.), U24CA268108 (E.M.Q., J.C.S.), U54AG075931-01 (I.R.), U54AG079754 (D.A.B., M.J.S.), U54AG075931 (I.R.), U54AG075932 (B. Soygur, B. Schilling, F.E.D., J.C.), U54AG075934 (A.K., F. Chen, J.W., L.D., L.R., Y. Song), U54AG075941 (G.A.K.), U54AG075941-02 (P.R., R.R.), U54AG076040 (A.D.H., H.P., N. Sloan, O.K., R.P.-L., V.M., Y. Suh), U54AG076041 (L.J.N., E.L.S.), U54AG079753-01 (P.R., R.R.), U54AG079754 (M.J.S.), U54AG079759 (R.R.M.), U54AG079779 (D.J.B., M.J.S., N.B.), U54AG75941 (C.A.-M., E.A.L.E., K.I., P.C., S.S.), UG3CA268096 (R.D., S. Kong), UG3CA268105 (F.E.D.), UG3CA268112 (H.E.D.-L.), UG3CA268117 (N. Slavov, Z.D.), UG3CA275669 (C.M.C., M.J.S., P.T.G.) and UG3CA275686 (A.P., P.V., R.P.-L.).

Author information

Authors and Affiliations

Authors

Contributions

N.N., V.S., A.D.H., A. Rocha, A.P., A.K., A.K.D., A.H., A.A., A.Z., B. Soygur, B. Schilling, C.M.C, C.A.-M., D.J.B., D.A.B., D.J., D.B.M., E.M.Q., E.A.L.E., E.L.S., F. Chen, F.E.D., F. Cambuli, G.K., G.A.K., G.L., H.E.D.-L., H.M., H.P., I.M.A.-N., I.R., J.N., J.F.P., J.C.S., J.C., J.W., K.I., K.B., K.M., K.N., L.D., L.J.N., L.W., L.C.A., L.R., M.L.D., M.G.T., M.J.S., M.X., M.H., M.B., N.B., N. Sloan, N. Slavov, O.K., P.R., P.T.G., P.V., P.D.A, P.C., Q.Z., R.R., R.P.-L., R.F., R.D., R.R.M., S. Shaikh, S.V., S.Y., S. Kang, S. Suvakov, S. Khosla, V.D.G., V.M., Y.X., Y. Song, Y. Suh and Z.D. researched data for the article. N.N., V.S., J.F.P. and P.D.A. created the manuscript outline. N.N., V.S., A.D.H., A. Rocha, A.P., A.K., A.K.D., A.H., A.A., A.Z., B. Soygur, B. Schilling, C.M.C., C.A.-M., D.J.B., D.A.B., D.J., D.B.M., E.M.Q., E.A.L.E., E.L.S., F. Chen, F.E.D., F. Cambuli, G.K., G.A.K., L.G., H.E.D.-L., H.M., H.P., I.M.A.-N., I.R., J.N., J.F.P., J.C.S., J.C., J.W., K.I., K.B., K.M., K.N., L.D., L.J.N., L.W., L.C.A., L.R., M.L.D., M.G.T., M.J.S., M.X., M.H., M.B., N.B., N. Sloan, N. Slavov, O.K., P.R., P.T.G., P.V., P.D.A., P.C., Q.Z., R.R., R.P.-L., R.F., R.D., R.R.M., S. Shaikh, S.V., S.Y., S. Kang, S. Suvakov, S. Khosla, V.D.G, V.M., Y.X., Y. Song, Y. Suh and Z.D. wrote the article. N.N., V.S., A.Z., B. Schilling, D.J.B., H.E.D.-L., J.F.P., J.C., L.J.N. and P.D.A. reviewed and/or edited the manuscript before submission. J.C.S., E.M.Q., N.N. and V.S. curated the database. N.N., V.S., S. Khosla, E.M.Q., D.J.B. and J.F.P. worked on the paper revision.

Corresponding author

Correspondence to Nicola Neretti.

Ethics declarations

Competing interests

The authors declare the following competing interests: J.C. is a founder and shareholder of Unity Biotechnology, which develops senolytic drugs. M.J.S., C.M.C. and Mayo Clinic have intellectual property related to this research. Research in the M.J.S. and D.J.B. laboratory is reviewed by the Mayo Clinic Conflict of Interest Review Board and conducted in compliance with Mayo Clinic Conflict of Interest policies. D.J.B. has a potential financial interest related to this research; he is a co-inventor on patents held by Mayo Clinic and patent applications licensed to or filed by Unity Biotechnology and a Unity Biotechnology shareholder. N. Slavov is a founding director and CEO of Parallel Squared Technology Institute, which is a non-profit research institute.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Raffaella Di Micco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

False-positive senescence

A cellular phenotype characterized by the presence of senescence markers without the cell being senescent.

Gene dropouts

In single-cell transcriptomics, refers to the failure to detect or quantify certain genes, typically owing low mRNA abundance.

Immunosenescence

The age-dependent functional decline of immune cells, including reduced frequency of naïve cells, increased exhaustion, and dysregulation of innate immunity and signalling pathways.

Karyomegaly

Refers to enlargement of the hepatocyte nucleus, which is associated with liver-weight increase or cellular senescence.

Long interspersed element-1

(LINE-1). A transposition-competent retrotransposable element that is still active in most mammalian genomes.

Macrophage crown-like structures

Clusters of macrophages that surround dead or dying adipocytes.

Marker prioritization

The process of selecting and ranking potential markers based on certain criteria such as specificity, sensitivity, ease of measurement and clinical utility.

Oncogene-induced senescence

A state of cellular senescence triggered by the activation of certain oncogenes (for example, RAS).

Replicative senescence

A type of cellular senescence induced by the progressive shortening of telomeres during cell divisions.

Senescence-associated β-galactosidase

(SA-β-gal). A marker of increased lysosomal activity.

Senescence-associated distension of satellites

(SADS). Observed in senescent cells as a consequence of chromatin rearrangement leading to the loss of integrity of centromeric regions.

Senescence-associated heterochromatic foci

(SAHF). Observed as DAPI-dense foci in senescent cells in culture, particularly in oncogene-induced senescence; represents large-scale heterochromatin formation.

Senescence-associated secretory phenotype

(SASP). Refers to the secretion of pro-inflammatory cytokines, growth factors, chemokines, proteases and other bioactive molecules.

Senescent cells

Cells that have permanently withdrawn from the cell cycle, usually owing to the build-up of DNA damage.

Syncytial knots

Placental syncytiotrophoblast specializations characterized by remarkable accumulation of nuclei with heavily condensed chromatin; a sign of trophoblast maturation and ageing commonly seen post 32 weeks of human gestation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryadevara, V., Hudgins, A.D., Rajesh, A. et al. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00738-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00738-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing