Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quality over quantity: powering neuroimaging samples in psychiatry

Abstract

Neuroimaging has been widely adopted in psychiatric research, with hopes that these non-invasive methods will provide important clues to the underpinnings and prediction of various mental health symptoms and outcomes. However, the translational impact of neuroimaging has not yet reached its promise, despite the plethora of computational methods, tools, and datasets at our disposal. Some have lamented that too many psychiatric neuroimaging studies have been underpowered with respect to sample size. In this review, we encourage this discourse to shift from a focus on sheer increases in sample size to more thoughtful choices surrounding experimental study designs. We propose considerations at multiple decision points throughout the study design, data modeling and analysis process that may help researchers working in psychiatric neuroimaging boost power for their research questions of interest without necessarily increasing sample size. We also provide suggestions for leveraging multiple datasets to inform each other and strengthen our confidence in the generalization of findings to both population-level and clinical samples. Through a greater emphasis on improving the quality of brain-based and clinical measures rather than merely quantity, meaningful and potentially translational clinical associations with neuroimaging measures can be achieved with more modest sample sizes in psychiatry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Considerations discussed throughout the review to improve power in detecting brain-behavior associations, beyond increasing sample size.

Similar content being viewed by others

References

  1. Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, et al. Reproducible brain-wide association studies require thousands of individuals. Nature. 2022;603:654–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu S, Abdellaoui A, Verweij KJH, van Wingen GA. Replicable brain-phenotype associations require large-scale neuroimaging data. Nat Hum Behav. 2023;7:1344–56.

    Article  PubMed  Google Scholar 

  3. Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005;2:e124.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76.

    Article  CAS  PubMed  Google Scholar 

  5. Szucs D, Ioannidis JPA. Sample size evolution in neuroimaging research: an evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. Neuroimage. 2020;221:117164.

    Article  PubMed  Google Scholar 

  6. Finn ES. Is it time to put rest to rest? Trends Cogn Sci. 2021;25:1021–32.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg MD, Finn ES. How to establish robust brain–behavior relationships without thousands of individuals. Nat Neurosci. 2022;25:835–7.

    Article  CAS  PubMed  Google Scholar 

  8. Makowski C, Brown TT, Zhao W, Hagler DJ, Parekh P, Garavan H, et al. Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples. bioRxiv. 2023. 1 October 2023. https://doi.org/10.1093/cercor/bhae223.

  9. Elliott ML, Knodt AR, Cooke M, Kim MJ, Melzer TR, Keenan R, et al. General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. Neuroimage. 2019;189:516–32.

    Article  PubMed  Google Scholar 

  10. Greene AS, Gao S, Scheinost D, Constable RT. Task-induced brain state manipulation improves prediction of individual traits. Nat Commun. 2018;9:2807.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang R, Zuo N, Ford JM, Qi S, Zhi D, Zhuo C, et al. Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships. Neuroimage. 2020;207:116370.

    Article  PubMed  Google Scholar 

  12. Finn ES, Bandettini PA. Movie-watching outperforms rest for functional connectivity-based prediction of behavior. Neuroimage. 2021;235:117963.

    Article  PubMed  Google Scholar 

  13. Zhao W, Makowski C, Hagler DJ, Garavan HP, Thompson WK, Greene DJ, et al. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. Neuroimage. 2023;270:119946.

    Article  PubMed  Google Scholar 

  14. Omidvarnia A, Sasse L, Larabi DI, Raimondo F, Hoffstaedter F, Kasper J, et al. Is resting state fMRI better than individual characteristics at predicting cognition? bioRxiv. 2023:2023.02.18.529076v4.

  15. Finn ES, Scheinost D, Finn DM, Shen X, Papademetris X, Constable RT. Can brain state be manipulated to emphasize individual differences in functional connectivity? Neuroimage. 2017;160:140–51.

    Article  PubMed  Google Scholar 

  16. Sripada C, Angstadt M, Rutherford S, Taxali A, Shedden K. Toward a ‘treadmill test’ for cognition: Improved prediction of general cognitive ability from the task activated brain. Hum Brain Mapp. 2020;41:3186–97.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goossen B, van der Starre J, van der Heiden C. A review of neuroimaging studies in generalized anxiety disorder: ‘so where do we stand?’. J Neural Transm. 2019;126:1203–16.

    Article  PubMed  Google Scholar 

  18. Finn E. To improve big data, we need small-scale human imaging studies. The Transmitter. 2024.

  19. Richtel M. Brain-Imaging Studies Hampered by Small Data Sets, Study Finds. The New York Times. 2022.

  20. Tejavibulya L, Rolison M, Gao S, Liang Q, Peterson H, Dadashkarimi J, et al. Predicting the future of neuroimaging predictive models in mental health. Mol Psychiatry. 2022;27:3129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tiego J, Martin EA, DeYoung CG, Hagan K, Cooper SE, Pasion R, et al. Precision behavioral phenotyping as a strategy for uncovering the biological correlates of psychopathology. Nat Ment Health. 2023;1:304–15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kang K, Seidlitz J, Bethlehem RAI, Schildcrout J, Tao R, Xiong J, et al. Study design features that improve effect sizes in cross-sectional and longitudinal brain-wide association studies. bioRxiv. 2024:2023.05.29.542742v3.

  23. Haukvik UK, Hartberg CB, Nerland S, Jørgensen KN, Lange EH, Simonsen C, et al. No progressive brain changes during a 1-year follow-up of patients with first-episode psychosis. Psychol Med. 2016;46:589–98.

    Article  CAS  PubMed  Google Scholar 

  24. Roiz-Santiáñez R, de la Foz VO-G, Ayesa-Arriola R, Tordesillas-Gutiérrez D, Jorge R, Varela-Gómez N, et al. No progression of the alterations in the cortical thickness of individuals with schizophrenia-spectrum disorder: a three-year longitudinal magnetic resonance imaging study of first-episode patients. Psychol Med. 2015;45:2861–71.

    Article  PubMed  Google Scholar 

  25. Nesvåg R, Bergmann Ø, Rimol LM, Lange EH, Haukvik UK, Hartberg CB, et al. A 5-year follow-up study of brain cortical and subcortical abnormalities in a schizophrenia cohort. Schizophr Res. 2012;142:209–16.

    Article  PubMed  Google Scholar 

  26. Makowski C, Bodnar M, Malla AK, Joober R, Lepage M. Age-related cortical thickness trajectories in first episode psychosis patients presenting with early persistent negative symptoms. NPJ Schizophr. 2016;2:16029.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Makowski C, Bodnar M, Shenker JJ, Malla AK, Joober R, Chakravarty MM, et al. Linking persistent negative symptoms to amygdala–hippocampus structure in first-episode psychosis. Transl Psychiatry. 2017;7:e1195–e1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raznahan A, Shaw PW, Lerch JP, Clasen LS, Greenstein D, Berman R, et al. Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proc Natl Acad Sci. 2014;111:1592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walhovd KB, Fjell AM, Giedd J, Dale AM, Brown TT. Through thick and thin: a need to reconcile contradictory results on trajectories in human cortical development. Cereb Cortex. 2017;27:1472–81.

    PubMed  Google Scholar 

  30. Yip SW, Konova AB. Densely sampled neuroimaging for maximizing clinical insight in psychiatric and addiction disorders. Neuropsychopharmacology. 2022;47:395–6.

    Article  PubMed  Google Scholar 

  31. McGowan AL, Sayed F, Boyd ZM, Jovanova M, Kang Y, Speer ME, et al. Dense sampling approaches for psychiatry research: combining scanners and smartphones. Biol Psychiatry. 2023;93:681–9.

    Article  PubMed  Google Scholar 

  32. Kraus B, Zinbarg R, Braga RM, Nusslock R, Mittal VA, Gratton C. Insights from personalized models of brain and behavior for identifying biomarkers in psychiatry. Neurosci Biobehav Rev. 2023;152:105259.

    Article  PubMed  Google Scholar 

  33. Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ, et al. Precision functional mapping of individual human brains. Neuron. 2017;95:791–807.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marek S, Greene DJ. Precision functional mapping of the subcortex and cerebellum. Curr Opin Behav Sci. 2021;40:12–18.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen M-Y, et al. Functional system and areal organization of a highly sampled individual human brain. Neuron. 2015;87:657–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gratton C, Kraus BT, Greene DJ, Gordon EM, Laumann TO, Nelson SM, et al. Defining individual-specific functional neuroanatomy for precision psychiatry. Biol Psychiatry. 2020;88:28–39.

    Article  PubMed  Google Scholar 

  37. Ooi LQR, Orban C, Nichols TE, Zhang S, Tan TWK, Kong R, et al. MRI economics: balancing sample size and scan duration in brain wide association studies. bioRxiv. 2024. 18 February 2024. https://doi.org/10.1101/2024.02.16.580448.

  38. Pardoe HR, Kucharsky Hiess R, Kuzniecky R. Motion and morphometry in clinical and nonclinical populations. Neuroimage. 2016;135:177–85.

    Article  PubMed  Google Scholar 

  39. Kong X-Z, Zhen Z, Li X, Lu H-H, Wang R, Liu L, et al. Individual differences in impulsivity predict head motion during magnetic resonance imaging. PLoS One. 2014;9:e104989.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ducharme S, Albaugh MD, Nguyen T-V, Hudziak JJ, Mateos-Pérez JM, Labbe A, et al. Trajectories of cortical thickness maturation in normal brain development—the importance of quality control procedures. Neuroimage. 2016;125:267–79.

    Article  PubMed  Google Scholar 

  41. Savalia NK, Agres PF, Chan MY, Feczko EJ, Kennedy KM, Wig GS. Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion. Hum Brain Mapp. 2017;38:472–92.

    Article  PubMed  Google Scholar 

  42. Baum GL, Roalf DR, Cook PA, Ciric R, Rosen AFG, Xia C, et al. The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. Neuroimage. 2018;173:275–86.

    Article  PubMed  Google Scholar 

  43. Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, et al. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage. 2012;60:623–32.

    Article  PubMed  Google Scholar 

  44. Makowski C, Lepage M, Evans AC. Head motion: the dirty little secret of neuroimaging in psychiatry. J Psychiatry Neurosci. 2019;44:62–68.

    Article  PubMed  Google Scholar 

  45. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage. 2000;11:735–59.

    Article  CAS  PubMed  Google Scholar 

  46. Buxton RB, Uludağ K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. Neuroimage. 2004;23:S220–S233.

    Article  PubMed  Google Scholar 

  47. Chen G, Taylor PA, Reynolds RC, Leibenluft E, Pine DS, Brotman MA, et al. BOLD Response is more than just magnitude: improving detection sensitivity through capturing hemodynamic profiles. Neuroimage. 2023;277:120224.

    Article  PubMed  Google Scholar 

  48. Burock MA, Dale AM. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp. 2000;11:249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp. 1997;5:329–40.

    Article  CAS  PubMed  Google Scholar 

  50. Dale AM. Optimal experimental design for event-related fMRI. Hum Brain Mapp. 1999;8:109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T, Hanke M, et al. Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci. 2017;20:299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marzi C, Giannelli M, Barucci A, Tessa C, Mascalchi M, Diciotti S. Efficacy of MRI data harmonization in the age of machine learning: a multicenter study across 36 datasets. Sci Data. 2024;11:115.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pinto MS, Paolella R, Billiet T, Van Dyck P, Guns P-J, Jeurissen B, et al. Harmonization of brain diffusion MRI: concepts and methods. Front Neurosci. 2020;14:396.

    Article  PubMed  PubMed Central  Google Scholar 

  54. El-Gazzar A, Thomas RM, van Wingen G. Harmonization techniques for machine learning studies using multi-site functional MRI data. bioRxiv. 2023:2023.06.14.544758.

  55. Heymans MW, Twisk JWR. Handling missing data in clinical research. J Clin Epidemiol. 2022;151:185–8.

    Article  PubMed  Google Scholar 

  56. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Allison PD. The SAGE handbook of quantitative methods in psychology. United Kingdom: SAGE Publications; 2009. p. 72–89.

  58. Croy CD, Novins DK. Methods for addressing missing data in psychiatric and developmental research. J Am Acad Child Adolesc Psychiatry. 2005;44:1230–40.

    Article  PubMed  Google Scholar 

  59. Gard AM, Hyde LW, Heeringa SG, West BT, Mitchell C. Why weight? Analytic approaches for large-scale population neuroscience data. Dev Cogn Neurosci. 2023;59:101196.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ricard JA, Parker TC, Dhamala E, Kwasa J, Allsop A, Holmes AJ. Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. Nat Neurosci. 2023;26:4–11.

    Article  CAS  PubMed  Google Scholar 

  61. van Buuren S. Flexible imputation of missing data, 2nd edition. United Kingdom: CRC Press; 2018.

  62. Palmer CE, Zhao W, Loughnan R, Zou J, Fan CC, Thompson WK, et al. Distinct regionalization patterns of cortical morphology are associated with cognitive performance across different domains. Cereb Cortex. 2021;31:3856–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao W, Palmer CE, Thompson WK, Chaarani B, Garavan HP, Casey BJ, et al. Individual differences in cognitive performance are better predicted by global rather than localized BOLD activity patterns across the cortex. Cereb Cortex. 2021;31:1478–88.

    Article  PubMed  Google Scholar 

  64. van der Meer D, Frei O, Kaufmann T, Shadrin AA, Devor A, Smeland OB, et al. Understanding the genetic determinants of the brain with MOSTest. Nat Commun. 2020;11:3512.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Noble S, Curtiss J, Pessoa L, Scheinost D. The tip of the iceberg: a call to embrace anti-localizationism in human neuroscience research. Imaging Neurosci. 2024;2:1–10.

  66. Abdallah CG, Sheth SA, Storch EA, Goodman WK. Brain imaging in psychiatry: time to move from regions of interest and interpretive analyses to connectomes and predictive modeling? Am J Psychiatry. 2023;180:17–19.

  67. Spisak T, Bingel U, Wager TD. Multivariate BWAS can be replicable with moderate sample sizes. Nature. 2023;615:E4–E7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Botvinik-Nezer R, Wager TD. Reproducibility in neuroimaging analysis: challenges and solutions. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:780–8.

    PubMed  Google Scholar 

  69. Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. Data leakage inflates prediction performance in connectome-based machine learning models. Nat Commun. 2024;15:1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Petzschner FH. Practical challenges for precision medicine. Science. 2024;383:149–50.

    Article  CAS  PubMed  Google Scholar 

  71. Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuroimage. 2017;145:166–79.

    Article  PubMed  Google Scholar 

  72. Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. Neuroimage. 2018;180:68–77.

    Article  PubMed  Google Scholar 

  73. Whelan R, Garavan H. When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol Psychiatry. 2014;75:746–8.

    Article  PubMed  Google Scholar 

  74. Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev. 2015;57:328–49.

    Article  PubMed  Google Scholar 

  75. Thölke P, Mantilla-Ramos Y-J, Abdelhedi H, Maschke C, Dehgan A, Harel Y, et al. Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data. Neuroimage. 2023;277:120253.

    Article  PubMed  Google Scholar 

  76. Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12:1100–22.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chekroud AM, Hawrilenko M, Loho H, Bondar J, Gueorguieva R, Hasan A, et al. Illusory generalizability of clinical prediction models. Science. 2024;383:164–7.

    Article  CAS  PubMed  Google Scholar 

  78. Chopra S, Dhamala E, Lawhead C, Ricard J, Orchard E, An L, et al. 252. Reliable and generalizable brain-based predictions of cognitive functioning across common psychiatric illness. Biol Psychiatry. 2023;93:S195.

    Article  Google Scholar 

  79. Rosenblatt M, Tejavibulya L, Camp CC, Jiang R, Westwater ML, Noble S, et al. Power and reproducibility in the external validation of brain-phenotype predictions. bioRxiv. 2023. 30 October 2023. https://doi.org/10.1101/2023.10.25.563971.

  80. Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, Greene DJ. Machine learning with neuroimaging: evaluating its applications in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5:791–8.

    PubMed  Google Scholar 

  81. Grosshagauer S, Woletz M, Vasileiadi M, Linhardt D, Nohava L, Schuler A-L, et al. Chronometric TMS-fMRI of personalized left dorsolateral prefrontal target reveals state-dependency of subgenual anterior cingulate cortex effects. Mol Psychiatry. 2024. 26 March 2024. https://doi.org/10.1038/s41380-024-02535-3.

  82. Hardikar S, McKeown B, Turnbull A, Xu T, Valk SL, Bernhardt BC, et al. Personality traits vary in their association with brain activity across situations. bioRxiv. 2024:2024.04.18.590056.

  83. Jones D. Psychology. A WEIRD view of human nature skews psychologists’ studies. Science. 2010;328:1627.

    Article  CAS  PubMed  Google Scholar 

  84. Choi SW, Ramos C, Kim K, Azim SF. The association of racial and ethnic social networks with mental health service utilization across minority groups in the USA. J Racial Ethn Health Disparities. 2019;6:836–50.

    Article  PubMed  Google Scholar 

  85. Lu W, Todhunter-Reid A, Mitsdarffer ML, Muñoz-Laboy M, Yoon AS, Xu L. Barriers and facilitators for mental health service use among racial/ethnic minority adolescents: a systematic review of literature. Front Public Health. 2021;9:641605.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kim SB, Lee YJ. Factors associated with mental health help-seeking among asian Americans: a systematic review. J Racial Ethn Health Disparities. 2022;9:1276–97.

    Article  PubMed  Google Scholar 

  87. Alexander LM, Escalera J, Ai L, Andreotti C, Febre K, Mangone A, et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data. 2017;4:170181.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ, et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cogn Neurosci. 2018;32:4–7.

    Article  PubMed  Google Scholar 

  89. Prado P, Medel V, Gonzalez-Gomez R, Sainz-Ballesteros A, Vidal V, Santamaría-García H, et al. The BrainLat project, a multimodal neuroimaging dataset of neurodegeneration from underrepresented backgrounds. Sci Data. 2024;11:19.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry. 2020;10:100.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Valdes-Sosa PA, Galan-Garcia L, Bosch-Bayard J, Bringas-Vega ML, Aubert-Vazquez E, Rodriguez-Gil I, et al. The Cuban Human Brain Mapping Project, a young and middle age population-based EEG, MRI, and cognition dataset. Sci Data. 2021;8:45.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aborode AT, Idowu NJ, Tundealao S, Jaiyeola J, Ogunware AE. Strengthening brain research in Africa. J Alzheimers Dis Rep. 2023;7:989–92.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R, Ramrakha S, et al. What is the test-retest reliability of common task-functional mri measures? new empirical evidence and a meta-analysis. Psychol Sci. 2020;31:792–806.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dubois J, Adolphs R. Building a science of individual differences from fMRI. Trends Cogn Sci. 2016;20:425–43.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Byington N, Grimsrud G, Mooney MA, Cordova M, Doyle O, Hermosillo RJM, et al. Polyneuro risk scores capture widely distributed connectivity patterns of cognition. Dev Cogn Neurosci. 2023;60:101231.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sellgren CM, Sheridan SD, Gracias J, Xuan D, Fu T, Perlis RH. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170–7.

    Article  CAS  PubMed  Google Scholar 

  99. O’Connell KS, Sønderby IE, Frei O, van der Meer D, Athanasiu L, Smeland OB, et al. Association between complement component 4A expression, cognitive performance and brain imaging measures in UK Biobank. Psychol Med. 2021;52:1–11.

    PubMed  Google Scholar 

  100. Hernandez LM, Kim M, Zhang P, Bethlehem RAI, Hoftman G, Loughnan R, et al. Multi-ancestry phenome-wide association of complement component 4 variation with psychiatric and brain phenotypes in youth. Genome Biol. 2023;24:42.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. Lancet. 2016;388:706–16.

    Article  CAS  PubMed  Google Scholar 

  102. Loughnan R, Ahern J, Tompkins C, Palmer CE, Iversen J, Thompson WK, et al. Association of genetic variant linked to hemochromatosis with brain magnetic resonance imaging measures of iron and movement disorders. JAMA Neurol. 2022;79:919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Loughnan R, Ahern J, Boyle M, Jernigan TL, Donald J Hagler J, et al. Neural archetypes learnt from hemochromatosis reveals iron dysregulation in motor circuits. medRxiv. 2024. 2022.10.22.22281386v3. https://doi.org/10.1101/2022.10.22.22281386.

  104. Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Brain charts for the human lifespan. Nature. 2022;604:525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marín O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med. 2016;22:1229–38.

    Article  PubMed  Google Scholar 

  106. Uhlhaas PJ, Davey CG, Mehta UM, Shah J, Torous J, Allen NB, et al. Towards a youth mental health paradigm: a perspective and roadmap. Mol Psychiatry. 2023. 14 August 2023. https://doi.org/10.1038/s41380-023-02202-z.

  107. Kong R, Yang Q, Gordon E, Xue A, Yan X, Orban C, et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb Cortex. 2021;31:4477–4500.

    Article  PubMed  PubMed Central  Google Scholar 

  108. He T, An L, Chen P, Chen J, Feng J, Bzdok D, et al. Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. Nat Neurosci. 2022;25:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kraus B, Sampathgiri K, Mittal VA. Accurate machine learning prediction in psychiatry needs the right kind of information. JAMA Psychiatry. 2024;81:11–12.

    Article  PubMed  Google Scholar 

  110. Winter NR, Blanke J, Leenings R, Ernsting J, Fisch L, Sarink K, et al. A systematic evaluation of machine learning-based biomarkers for major depressive disorder. JAMA Psychiatry. 2024;81:386–95.

    Article  PubMed  Google Scholar 

  111. Lynch CJ, Elbau I, Ng T, Ayaz A, Zhu S, Manfredi N, et al. Expansion of a frontostriatal salience network in individuals with depression. bioRxiv. 2023. 14 August 2023. https://doi.org/10.1101/2023.08.09.551651.

  112. Zhao Y, Dahmani L, Li M, Hu Y, Ren J, Lui S, et al. Individualized functional connectome identified replicable biomarkers for dysphoric symptoms in first-episode medication-naïve patients with major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:42–51.

    PubMed  Google Scholar 

  113. Smucny J, Lesh TA, Carter CS. Baseline frontoparietal task-related BOLD activity as a predictor of improvement in clinical symptoms at 1-year follow-up in recent-onset psychosis. Am J Psychiatry. 2019;176:839–45.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry. 2014;13:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Timothy Brown, Terry Jernigan, and Robert Loughnan for insightful conversations that helped shape some of the perspectives shared in this manuscript.

Funding

This work was supported by the National Institutes of Mental Health (award number K99MH132886; CM). The funding agency did not influence the perspectives outlined in the manuscript, nor the decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

CM and AMD conceived the ideas presented in this manuscript. CM wrote the first draft. TN provided statistical expertise on presented concepts. All authors contributed to editing the final manuscript.

Corresponding author

Correspondence to Carolina Makowski.

Ethics declarations

Competing interests

AMD reports that he was a Founder of and holds equity in CorTechs Labs, Inc., and serves on its Scientific Advisory Board. He is a member of the Scientific Advisory Board of Human Longevity, Inc. He receives funding through research grants from GE Healthcare to UCSD. The terms of these arrangements have been reviewed by and approved by UCSD in accordance with its conflict of interest policies. AMD also reports that he has memberships with the following research consortia: Alzheimer’s Disease Genetics Consortium (ADGC); Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA); Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL); Psychiatric Genomics Consortium (PGC). All other authors have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makowski, C., Nichols, T.E. & Dale, A.M. Quality over quantity: powering neuroimaging samples in psychiatry. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01893-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01893-4

Search

Quick links