Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The optically dark side of galaxy formation

Abstract

Deep optical surveys1,2 probe the rest-frame ultraviolet luminosities of high-redshift galaxies. They can therefore be used to infer star formation rates, under assumptions about young stellar populations. Current data suggest that the global star-formation rate of the Universe peaked at a redshift of z = 1, then subsequently declined3,4, leading to claims that the bulk of star formation in the Universe has been seen. However, the large uncertainties inherent in correcting for ultraviolet absorption by dust associated with young stars suggest that these formation rates might be substantially underestimated in high-redshift galaxies. Here we circumvent this problem by considering the dust thermal emission at infrared (and submillimetre) wavelengths. We propose an improved determination of the long-sought cosmic infrared background5 (built up from the accumulated infrared light of faint galaxies along the line of sight), from which we are able to estimate the required population of high-redshift, dust-enshrouded starburst galaxies. We argue that most of the star formation at high redshift may be hidden by dust, and we define the necessary characteristics of a feasible far-infrared survey that could detect this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inset, high-latitude COBE/FIRAS spectrum in regions with very low H Icolumn densities (NH .
Figure 2: Predictions for differential counts normalized to Euclidean counts at 60 µm (upper panel) and 200 µm (lower pane.l).
Figure 3: Comparison of predicted power spectra for observations in the ISO C160 filter.

Similar content being viewed by others

References

  1. Lilly, S. J., Tresse, L., Hammer, F., Crampton, D. & Le Fèvre, O. The Canada–France Redshift Survey. VI. Evolution of the galaxy luminosity function to z 1. Astrophys. J. 455, 108–124 (1995).

    Article  ADS  Google Scholar 

  2. Williams, R. E. et al. The Hubble Deep Field: observations, data reduction, and galaxy photometry. Astron. J. 112, 1335–1389 (1996).

    Article  ADS  Google Scholar 

  3. Lilly, S. J., Le Fèvre, O., Hammer, F. & Crampton, D. The Canada–France Redshift Survey: the luminosity density and star formation history of the universe to z 1. Astrophys. J. 460, L1–L4 (1996).

    Article  ADS  Google Scholar 

  4. Madau, P. et al. High redshift galaxies in the Hubble Deep Field. Color selection and star formation history to z 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996).

    Article  ADS  Google Scholar 

  5. Puget, J. L. et al. Tentative detection of a cosmic far-infrared background with COBE. Astron. Astrophys. 308, L5–L8 (1996).

    ADS  Google Scholar 

  6. Soifer, B. T. & Neugebauer, G. The properties of infrared galaxies in the local Universe. Astron. J. 101, 354–361 (1991).

    Article  ADS  Google Scholar 

  7. Hacking, P. & Houck, J. R. Avery deep IRAS survey at l = 97°, b = 30°. Astrophys. J. Suppl. Ser. 63, 311–333 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Ashby, M. L. N., Hacking, P. B., Houck, J. R., Soifer, B. T. & Weisstein, E. W. Amassive z = 0.088 supercluster and tests of starburst galaxy evolution at the North Ecliptic Pole. Astrophys. J. 456, 428–436 (1996).

    Article  ADS  Google Scholar 

  9. Rowan-Robinson, M. et al. Observations of the Hubble Deep Field with the Infrared Space Observatory. V. Spectral energy distributions, starburst models and star formation history. Mon. Not. R. Astron. Soc.(in the press).

  10. Reach, W. T. et al. Far-infrared spectral observations of the galaxy by COBE. Astrophys. J. 451, 188–199 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Hartmann, D. & Burton, W. B. An Atlas of Galactic Neutral Hydrogen Emission(Cambridge Univ. Press, (1995)).

    Google Scholar 

  12. Boulanger, F. et al. The dust/gas correlation at high Galactic latitude. Astron. Astrophys. 312, 256–262 (1996).

    Google Scholar 

  13. Lacey, C. & Silk, J. Tidally triggered galaxy formation. I. Evolution of the galaxy luminosity function. Astrophys. J. 381, 14–32 (1991).

    Article  ADS  Google Scholar 

  14. Kauffmann, G. A. M., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Guiderdoni, B., Hivon, E., Bouchet, F. R. & Maffei, B. Semi-analytic modelling of galaxy evolution in the IR/submm range. Mon. Not. R. Astron. Soc.(in the press).

  16. Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517–525 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Heyl, J. S., Cole, S., Frenk, C. S. & Navarro, J. F. Galaxy formation in a variety of hierarchical models. Mon. Not. R. Astron. Soc. 274, 755–768 (1995).

    Article  ADS  Google Scholar 

  18. Kennicutt, R. C., Tamblyn, P. & Congdon, C. W. Past and future star formation in disk galaxies. Astrophys. J. 435, 22–36 (1994).

    Article  ADS  Google Scholar 

  19. Pascarelle, S. M., Windhorst, R. A., Keel, W. C. & Odewahn, S. C. Sub-galactic clumps at a redshift of 2.39 and implications for galaxy formation. Nature 383, 45–50 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Zepf, S. E. & Koo, D. C. Close pairs of galaxies in deep sky surveys. Astrophys. J. 337, 34–44 (1989).

    Article  ADS  Google Scholar 

  21. Burkey, J. M., Keel, W. C., Windhorst, R. A. & Franklin, B. E. Galaxy pairs in deep HST images: evidence for evolution in the galaxy merger rate. Astrophys. J. 429, L13–L17 (1994).

    Article  ADS  Google Scholar 

  22. Carlberg, R. G., Pritchet. C. J. & Infante, L. Asurvey of faint galaxy pairs. Astrophys. J. 435, 540–547 (1994).

    Article  ADS  Google Scholar 

  23. Sanders, D. B. & Mirabel, I. F. Luminous infrared galaxies. Annu. Rev. Astron. Astrophys. 34, 749–792 (1996).

    Article  Google Scholar 

  24. Soifer, B. T. et al. The IRAS Bright Galaxy Sample. II. The sample and luminosity function. Astrophys. J. 320, 238–257 (1987).

    Article  ADS  Google Scholar 

  25. Hauser, M. G. in Unveiling the Cosmic Infrared Background(ed. Dwek, E.) 11–21 (AIP Conf. Proc. 348, (1996).

    Google Scholar 

  26. Lonsdale, C. J., Hacking, P. B., Conrow, T. P. & Rowan-Robinson, M. Galaxy evolution and large-scale structure in the far-infrared. II. The IRAS faint source survey. Astrophys. J. 358, 60–80 (1990).

    Article  ADS  Google Scholar 

  27. Rowan-Robinson, M., Saunders, W., Lawrence, A. & Leech, K. The QMW IRAS galaxy catalogue: a highly complete and reliable IRAS 60-µm galaxy catalogue. Mon. Not. R. Astron. Soc. 253, 485–495 (1991).

    Article  ADS  Google Scholar 

  28. Bertin, E., Dennefeld, M. & Moshir, M. Galaxy evolution at low redshift? II. Number counts and optical identifications of faint IRAS sources. Astron. Astrophys. 323, 685xs–696 (1997).

    ADS  Google Scholar 

  29. Gautier, T. N. II, Boulanger, F., Perault, M. & Puget, J. L. Acalculation of confusion noise due to infrared cirrus. Astron. J. 103, 1313–1324 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dave Clements, François-Xavier Désert and Bruno Maffei for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Guiderdoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiderdoni, B., Bouchet, F., Puget, JL. et al. The optically dark side of galaxy formation. Nature 390, 257–259 (1997). https://doi.org/10.1038/36792

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36792

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing