Skip to main content
Log in

Coronal heating and solar wind acceleration; gyrotropic electron-proton solar wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In coronal holes the electron (proton) density is low, and heating of the proton gas produces a rapidly increasing proton temperature in the inner corona. In models with a reasonable electron density in the upper transition region the proton gas becomes collisionless some 0.2 to 0.3 solar radii into the corona. In the collisionless region the proton heat flux is outwards, along the temperature gradient. The thermal coupling to electrons is weak in coronal holes, so the heat flux into the transition region is too small to supply the energy needed to heat the solar wind plasma to coronal temperatures. Our model studies indicate that in models with proton heating the inward heat conduction may be so inefficient that some of the energy flux must be deposited in the transition region to produce the proton fluxes that are observed in the solar wind. If we allow for coronal electron heating, the energy that is needed in the transition region to heat the solar wind to coronal temperatures, may be supplied by heat conduction from the corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiuderi Drago, F., Landi, E., Fludra, A., and Kerdraon, A.: 1999, Astron. Astrophys. 348, 261.

    Google Scholar 

  • Cranmer, S. R.: 2000, Astrophys. J. 532, 1197.

    Google Scholar 

  • Demars, H. and Schunk, R.: 1979, J. Phys. D: Appl. Phys. 12, 1051.

    Google Scholar 

  • Demars, H. and Schunk, R.: 1999, Planet. Space Sci. 39, 435.

    Google Scholar 

  • Esser, R., Fineschi, S., Dobrzycka, D., Habbal, S. R., Edgar, R. J., Raymond, J. C., Kohl, J. L., and Guhathakurta, M.: 1999, Astrophys. J. 510, L63.

    Google Scholar 

  • Fludra, A., del Zanna, G., Alexander, D., and Bromage, B. J. I.: 1999, J. Geophys. Res. 104, 9709.

    Google Scholar 

  • Hansteen, V. H. and Leer, E.: 1995, J. Geophys. Res. 100, 21577.

    Google Scholar 

  • Hansteen, V. H., Leer, E., and Holzer, T. E.: 1997, Astrophys. J. 482, 498.

    Google Scholar 

  • Ko, Y. and Groth, C. P. T.: 1999, Space Sci. Rev. 87, 227.

    Google Scholar 

  • Kohl, J. L. et al.: 1998, Astrophys. J. 501, L127.

    Google Scholar 

  • Kopp, R. A. and Holzer, T. E.: 1976, Solar Phys. 49, 43.

    Article  Google Scholar 

  • Koutchmy, S.: 1977, Solar Phys. 51, 399.

    Google Scholar 

  • Leblanc, F. and Hubert, D.: 1997, Astrophys. J. 483, 464.

    Google Scholar 

  • Leblanc, F. and Hubert, D.: 1998, Astrophys. J. 501, 375.

    Google Scholar 

  • Leer, E. and Holzer, T. E.: 1980, J. Geophys. Res. 85, 4681.

    Google Scholar 

  • Li, X.: 1999, J. Geophys. Res. 104, 19773.

    Google Scholar 

  • Lie-Svendsen, ��. and Leer, E.: 2000, J. Geophys. Res. 105, 35.

    Google Scholar 

  • Lie-Svendsen, Ø., Hansteen, V. H., and Leer, E.: 1997, J. Geophys. Res. 102, 4701.

    Google Scholar 

  • Munro, R. H. and Jackson, B. V.: 1977, Astrophys. J. 213, 874.

    Article  Google Scholar 

  • Olsen, E. L. and Leer, E.: 1999, J. Geophys. Res. 104, 9963.

    Google Scholar 

  • Parker, E. N.: 1963, Interplanetary Dynamical Processes, Interscience, New York.

    Google Scholar 

  • Rosner, R., Tucker, W. H., and Vaiana, G. S.: 1978, Astrophys. J. 220, 643.

    Article  Google Scholar 

  • Tu, C.-Y. and Marsch, E.: 1997, Solar Phys. 171, 363.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endeve, E., Leer, E. Coronal heating and solar wind acceleration; gyrotropic electron-proton solar wind. Solar Physics 200, 235–250 (2001). https://doi.org/10.1023/A:1010313719194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010313719194

Keywords

Navigation