Skip to main content
Log in

Interplanetary origin of geomagnetic storms

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process.

During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs).

Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I.: 1981, 'Energy Coupling between the Solar Wind and the Magnetosphere', Space Sci. Rev. 28, 111.

    Article  ADS  Google Scholar 

  • Axford, W. I. and Hines, C. O.: 1961, 'A Unifying Theory of High Latitude Geophysical Phenomena and Geomagnetic Storms', Can. J. Phys. 39, 1433.

    MathSciNet  ADS  Google Scholar 

  • Behannon, K. W., Burlaga, L. F. and Hewish, A.: 1991, 'Structure and Evolution of Compound Streams at _ 1 AU', J. Geophys. Res. 96, 21213.

    ADS  Google Scholar 

  • Belcher, J. W. and Davis, L., Jr.: 1971, 'Large Amplitude Alfvén Waves in the Interplanetary Medium, 2', J. Geophys. Res. 76, 3534.

    ADS  Google Scholar 

  • Bell, J. T., Gussenhoven, M. S. and Mullen, E. G.: 1997, 'Super Storms', J. Geophys. Res. 102, 14189.

    Article  ADS  Google Scholar 

  • Borrini, G., Gosling, J. T., Bame, S. J. and Feldman, W. C.: 1982, 'An Analysis of Shock Wave Disturbances Observed at 1 AU from 1971 through 1978', J. Geophys. Res. 87, 4365.

    ADS  Google Scholar 

  • Borovsky, J. E., Thomsen, M. F. and McComas, D. J.: 1997, 'The Superdense Plasma Sheet: Plasmaspheric Origin, SolarWind Origin, or Ionospheric Origin?', J. Geophys. Res. 102, 22089.

    Article  ADS  Google Scholar 

  • Bothmer, V. and Schwenn, R.: 1995, 'The Interplanetary and Solar Causes of Major Geomagnetic Storms', J. Geomag. Geolectr. 47, 1127.

    Google Scholar 

  • Bravo, S., Cruz-Abeyro, A. L. and Rojas, D.: 1998, 'The Spatial Relationship between Active Regions and Coronal Holes and the Occurrence of Intense Geomagnetic Storms through the Solar Activity Cycle', Ann. Geophys. 16, 49.

    ADS  Google Scholar 

  • Burlaga, L. F.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York.

    Google Scholar 

  • Burlaga, L. F. and Lepping, R. P.: 1977, 'The Causes of Recurrent Geomagnetic Storms', Planetary Space Phys. 25, 1151.

    Article  ADS  Google Scholar 

  • Burlaga, L. F., Pizzo, V., Lazarus, A. and Gazis, P.: 1985, 'Stream Dynamics between 1 AU and 2 AU: A Comparison of Observations and Theory', J. Geophys. Res. 90, 7317.

    ADS  Google Scholar 

  • Burlaga, L. F., Sittler, E., Mariani, F. and Schwenn, R.: 1981, 'Magnetic Loop Behind an Interplanetary Shock: Voyager, Helios and IMP-8 Observations', J. Geophys. Res. 86, 6673.

    ADS  Google Scholar 

  • Burlaga, L. F., Behannon, K.W. and Klein, L. W.: 1987, 'Compound Streams, Magnetic Clouds and Major Geomagnetic Storms', J. Geophys. Res. 92, 5725.

    ADS  Google Scholar 

  • Burlaga, L. F., Fitzenreiter, R., Lepping, R. P., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R. P. and Larson, D. E.: 1998, 'A Magnetic Cloud Containing Prominence Material: January 1997', J. Geophys. Res. 103, 277.

    Article  ADS  Google Scholar 

  • Cane, H. V. and Richardson, I. G.: 1997, 'What Caused the Large Geomagnetic Storm of November 1978?', J. Geophys. Res. 102, 17445.

    Article  ADS  Google Scholar 

  • Chen, L. and Hasegawa, A.: 1974, 'A Theory of Long-Period Magnetic Pulsations, 1), Steady State Excitation of Field-Line Resonances', J. Geophys. Res. 79, 1024.

    ADS  Google Scholar 

  • Choe, G. S., LaBelle-Hamer, N., Tsurutani, B. T. and Lee, L. C.: 1992, 'Identification of a Driver Gas Boundary Layer', EOS Trans. Amer. Geophys. Union 73, 485.

    Google Scholar 

  • ClÚa de Gonzalez, A. L., Gonzalez, W. D., Dutra, S. L. G. and Tsurutani, B. T.: 1993, 'Periodic Variation in the Geomagnetic Activity: a Study Based on the Ap Index', J. Geophys. Res. 98, 9215.

    ADS  Google Scholar 

  • ClÚa de Gonzalez, A. L., Silbergleit, V., Gonzalez, W. D. and Tsurutani, B. T.: 1998, 'Is the Classical Seasonal Pattern Valid for High Intensity Levels of the Geomagnetic Activity?', J. Atmospheric Terrest. Phys., submitted.

  • Costello, K. A.: 1996, 'Retraining Neutral Networks for the Prediction of Dst in the Rice Magnetospheric Specification and Forecast Model', M.S. Thesis, Rice University, Houston, Texas.

    Google Scholar 

  • Crooker, N. V., Gosling, J. T. and Kahler, S. W.: 1998, 'Magnetic Clouds at Sector Boundaries', J. Geophys. Res. 103, 301.

    Article  ADS  Google Scholar 

  • Dryer, M.: 1994, 'Interplanetary Studies: Propagation of Disturbances between the Sun and the Magnetosphere', Space Sci. Rev. 67, 363.

    Article  ADS  Google Scholar 

  • Dungey, J. W.: 1961, 'Interplanetary Magnetic Field and the Auroral Zones', Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Farrugia, C. J., Burlaga, L. F., Osherovich, V. A., Richardson, I. G., Freeman, M. P., Lepping, R. P. and Lazarus, A. J.: 1993, 'A Study of an Expanding Interplanetary Magnetic Cloud and Its Interaction with the Earth's Magnetosphere: the Interplanetary Aspect', J. Geophys. Res. 98, 7621.

    ADS  Google Scholar 

  • Farrugia, C. J., Osherovich, V. A. and Burlaga, L. F.: 1995, 'Magnetic Flux Rope versus the Spheromak as Models for Interplanetary Magnetic Clouds', J. Geophys. Res. 100, 2293.

    Google Scholar 

  • Farrugia, C. J., Burlaga, L. F. and Lepping, R. P.: 1997, in B. T. Tsurutani, W. D. Gonzalez and Y. Kamide (eds), 'Magnetic Clouds and the Quiet-Storm Effect at Earth', Magnetic Storms, AGU Monograph, Washington D.C., p. 91.

    Google Scholar 

  • Galvin, A. B., Ipavich, F.M., Gloeckler, G., Hovestadt, D., Bame, S. J., Kleckler, B., Scholer,M. and Tsurutani, B. T.: 1987, 'Solar Wind Ion Charge Status Preceding a Driver Plasma', J. Geophys. Res. 92, 12069.

    ADS  Google Scholar 

  • Gold, T.: 1962, 'Magnetic Storms', Space Sci. Rev. 1, 100.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D. and Tsurutani, B. T.: 1987, 'Criteria of Interplanetary Parameters Causing Intense Magnetic Storms (Dst < _100 nT)', Planetary Space Sci. 35, 1101.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D. and Tsurutani, B. T.: 1992, 'Terrestrial Response to Eruptive Solar Flares: Geomagnetic Storms-A Review', in Z. Švestka, B. V. Jackson and M. E. Machado (eds), Frontiers in Physics: Eruptive Solar Flares, Springer-Verlag, Berlin, p. 277.

    Google Scholar 

  • Gonzalez, W. D., Tsurutani, B. T., ClÚa de Gonzalez, A. L., Tang, F., Smith, E. J. and Akasofu, S. I.: 1989, 'SolarWind-Magnetosphere Coupling During Intense Geomagnetic Storms (1978–1979)', J. Geophys. Res. 94, 883.

    ADS  Google Scholar 

  • Gonzalez, W. D., ClÚa de Gonzalez, A. L., Mendes, O., Jr. and Tsurutani, B. T.: 1992, 'Difficulties in Defining Storm Sudden Commencements', EOS Trans. Amer. Geophys. Union 73, 180.

    ADS  Google Scholar 

  • Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T. and Vasyliunas, V. M.: 1994, ' What is a Geomagnetic Storm?', J. Geophys. Res. 99, 5771.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., ClÚa de Gonzalez, A. L. and Tsurutani, B. T.: 1995, 'Geomagnetic Response to Large-Amplitude Interplanetary Alfvén Wave Trains', Physica Scripta 51, 140.

    Google Scholar 

  • Gonzalez, W. D., Tsurutani, B. T., McIntosh, P. and ClÚa de Gonzalez, A. L.: 1996, 'Coronal-Holes-Active Region-Current Sheet Association with Intense Interplanetary and Geomagnetic Phenomena', Geophys. Res. Lett. 23, 2577.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., ClÚa De Gonzalez,. L., Dal Lago, A., Tsurutani, B. T., Arballo, J. K., Lakhina, G. S., Buti, B. and Ho, G. M.: 1998, 'Magnetic Cloud Field Intensities and Solar Wind Velocities', Geophys. Res. Lett. 25, 963.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Baker, D. N., Bame, S. J., Feldman, W. C. and Zwickl, R. D.: 1987, 'Bi-Directional Solar Wind Electron Heat Flux Events', J. Geophys. Res. 92, 8519.

    ADS  Google Scholar 

  • Gosling, J. T., McComas, D. J., Phillips, J. L. and Bame, S. J.: 1991, 'Geomagnetic Activity Associated with Earth Passage of Interplanetary Shock Disturbances and Coronal Mass Ejections', J. Geophys. Res. 96, 7831.

    ADS  Google Scholar 

  • Grande,M., Perry, C. H., Blake, J. B., Chen, M.W., Fennell, J. F. and Wilken, B.: 1996, 'Observations of Iron, Silicon, and Other Heavy Ions in the Geostationary Altitude Region During Late March 1991', J. Geophys. Res. 101, 24707.

    Article  ADS  Google Scholar 

  • Ivanov, K. G., Harschiladze, A. F., Eroshenko, E. G., and Styazhkin, V. A.: 1989, 'Configuration, Structure and Dynamics of Magnetic Clouds from Solar Flares in Light of Measurements on Board Vega 1 and Vega 2 in January-February 1986', Solar Phys. 120, 407.

    Article  ADS  Google Scholar 

  • Jackson, B. V.: 1997, 'Heliospheric Observations of Solar Disturbances and Their Potential Role in the Origin of Storms', in B. T. Tsurutani, W. D. Gonzalez and Y. Kamide (eds), Magnetic Storms, Amer. Geophys. Union Press, Washington D.C., Mon. Ser. 98, p. 59.

    Google Scholar 

  • Kamide, Y., Yokoyama, N., Gonzalez, W. D., Tsurutani, B. T., Brekke, A. and Masuda, S.: 1998, 'Two-Step Development of Geomagnetic Storms', J. Geophys. Res. 103, 6917.

    Article  ADS  Google Scholar 

  • Klein, L. W. and Burlaga, L. F.: 1982, 'Interplanetary Magnetic Clouds at 1 AU', J. Geophys. Res. 87, 613.

    ADS  Google Scholar 

  • Kennel, C. F., Edmiston, J. P. and Hada, T.: 1985, 'A Quarter Century of Collionless Shock Research', in R. G. Stone and B. T. Tsurutani (eds), Collisionless Shocks in the Heliosphere, AGU Monograph, Ser. 34, Washington D.C., p. 1.

  • Kozyra, J. U., Fok, M.-C., Jordanova, V. K. and Borovsky, J. E.: 1998, 'Relationship between Plasma Sheet Preconditioning and Subsequent Ring Current Development During Periods of Enhanced Cross-Tail Electric Field', International Conference on Substorms-4, abstract 5–02, p. 80.

  • Knipp, D. J., Emery, B. A., Engebretson, N., Li, X., McAllister, A. H., Mukai, T., Kokubun, S., Reeves, G. D., Evans, D., Obara, T., Pi, X., Rosenberg, T., Weatermax, A., McHarg, M. G., Chun, F., Mosely, K., Crodescu, M., Lanzerotti, L., Rich, F. J., Sharber, J. and Wilkinson, P.: 1998, 'An Overview of the Early November 1993 Geomagnetic Storm', J. Geophys. Res. 103, 26197.

    Article  ADS  Google Scholar 

  • Legrand, J. P. and Simon, P. A.: 1991, 'A Two-Component Solar Cycle', Solar Phys. 131, 187.

    Article  ADS  Google Scholar 

  • Lepping, R. P., Burlaga, L. F., Szabo, A., Ogilvie, K.W., Mish, W. H., Vassiliadis, D., Lazarus, A. J., Steinberg, J. T., Farrugia, C. J., Janoo, L. J. and Mariani, F.: 1997, 'The Wind Magnetic Cloud and Events of October 18–20, 1995: Interplanetary Properties and Triggers for Geomagnetic Activity', J. Geophys. Res. 102, 14049.

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1986, 'Structure of the InterplanetaryMagnetic Clouds and Their Solar Origins', Adv. Space Res. 6 (6), 335.

    Article  ADS  Google Scholar 

  • Newell, P. T., Meng, C.-I. and Wing, S.: 1988, 'Relation to Solar Activity of Intense Aurorae in Sunlight and Darkness', Nature 393, 342.

    Article  ADS  Google Scholar 

  • Odstrcil, D.: 1998, 'Numerical Simulation of Interplanetary Plasma Clouds Propagating Along the Heliospheric Plasma Sheath', Astrophys. Letters Commun., in press.

  • Parker, E. N.: 1958, 'Interaction of Solar Wind with the Geomagnetic Field', Phys. Fluids 1, 171.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Perreault, P. and Akasofu, S.-I.: 1978, 'A Study of Geomagnetic Storms', J. Roy. Astron. Sci. 54, 547.

    ADS  Google Scholar 

  • Phillips, J. L., Balogh, A., Bame, S. J., Goldstein, B. E., Gosling, J. T., Hoeksema, J. T., McComas, D. J., Neugebauer, M., Sheeley, N. R. and Yang, Y. M.: 1994, 'Ulysses at 500 South: Constant Immersion in the High-Speed Solar Wind', Geophys. Res. Lett. 21, 1105.

    Article  ADS  Google Scholar 

  • Russell, C. T.: 1972, 'The Configuration of the Magnetosphere', in E. R. Dyer (ed.), Critical Prob. Magnet. Phys., Nat. Acad. Sci., Washington D.C., p. 1.

    Google Scholar 

  • Russell, C. T. and McPherron, R. L.: 1973, 'Semiannual Variation of Geomagnetic Activity', J. Geophys. Res. 78, 92.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Jr., Harvey, J. W. and Feldman, W. C.: 1976, 'Coronal Holes, Solar Wind Streams and Recurrent Geomagnetic Disturbances, 1973–1976', Solar Phys. 49, 271.

    Article  ADS  Google Scholar 

  • Smith, E. J. and Sonett, C. P.: 1976, 'The August 1972 Solar Terrestrial Events: Interplanetary Magnetic Field Observations', Space Sci. Rev. 19, 661.

    Article  ADS  Google Scholar 

  • Smith, E. J. and Wolf, J. W.: 1976, 'Observations of Interaction Regions and Corotating Shocks between One and Five AU: Pioneers 10 and 11', Geophys. Res. Lett. 3, 137.

    ADS  Google Scholar 

  • Smith, E. J., Balogh, A., Neugebauer, M. and McComas, D.: 1995, 'Ulysses Observations of Alfvén Waves in the Southward Northern Solar Hemisphere', Geophys. Res. Lett. 22, 3381.

    Article  ADS  Google Scholar 

  • Southwood, D. J.: 1974, 'Some Features of Field-Line Resonance in the Magnetosphere', Planetary Space Sci. 22, 483.

    Article  ADS  Google Scholar 

  • Thorne, R.M. and Tsurutani, B. T.: 1991, 'Wave-Particle Interactions in theMagnetopause Boundary Layer', in T. Chang et al. (eds), Physics of Space Plasmas (1990), Sei Publ. Inc., Cambridge,MA, p. 119.

    Google Scholar 

  • Timothy, A. F., Krieger, A. S. and Vaiana, G. S.: 1975, 'The Structure and Evolution of Coronal Holes', Solar Phys. 42, 135.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T. and Gonzalez, W. D.: 1987, 'The Cause of High Intensity Long-Duration Continuous AE Activity (HILDCAAs): Interplanetary Alfvén Waves Trains', Planetary Space Sci. 35, 405.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T. and Thorne, R. M.: 1982, 'Diffusion Processes in the Magnetopause Boundary Layer', Geophys. Res. Lett. 9, 1247.

    ADS  Google Scholar 

  • Tsurutani, B. T. and Gonzalez, W. D.: 1995a, 'The Future of Geomagnetic Storm Predictions: Implications from Recent Solar and Interplanetary Observations', J. Atmospheric Terrest. Phys. 57, 1369.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T. and Gonzalez, W. D.: 1995b, 'The Efficiency of "Viscous Interaction" between the Solar Wind and the Magnetosphere During Intense Northward IMF Events', Geophys. Res. Lett. 22, 663.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T. and Gonzalez, W. D.: 1997, 'The interplanetary Causes of Magnetic Storms: A Review', in B. T. Tsurutani, W. D. Gonzalez and Y. Kamide (eds), Magnetic Storms, Amer. Geophys. Union Press, Washington D.C., Mon. Ser. 98, 1997, p. 77.

    Google Scholar 

  • Tsurutani, B. T., Russell, C. T., King, J. H., Zwickl, R. J. and Lin, R. P.: 1984, 'A Kinky Heliospheric Current Sheath: Causes of the CDAW6 Substorms', Geophys. Res. Lett. 11, 339.

    ADS  Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I. and Smith, E. J.: 1988a, 'Origin of Interplanetary Southward Magnetic Fields Responsible for Major Magnetic Storms Near Solar Maximum (1978–1979)', J. Geophys. Res. 93, 8519.

    ADS  Google Scholar 

  • Tsurutani, B. T., Goldstein, B. E., Gonzalez, W. D. and Tang, F.: 1988b, 'Comment on "A New Method of Forecasting Geomagnetic Activity and Proton Showers", by A. Hewish and P. J. Duffet-Smith', Planetary Space Sci. 36, 205.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D. and Sugiura, M.: 1990, 'Interplanetary Alfvén Waves and Auroral Substorm Activity: IMP-8', J. Geophys. Res. 95, 2241.

    ADS  Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Tang, F., Lee, Y. T., Okada, M., and Park, D.: 1992, 'Reply to L. J. Lanzerotti: SolarWind Ram Pressure Corrections and an Estimation of the Efficiency of Viscous Interaction', Geophys. Res. Lett. 19, 1993.

    ADS  Google Scholar 

  • Tsurutani, B. T., Ho, C. M., Smith, E. J., Neugebauer, M., Goldstein, B. E., Mok, J. S., Arballo, J. K., Balogh, A., Southwood, D. J. and Feldman, W. C.: 1994, 'The Relationship between Interplanetary Discontinuities and Alfvén Waves: Ulysses Observations', Geophys. Res. Lett. 21, 2267.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Ho, C.M., Arballo, J. K., Goldstein, B. E. and Balogh, A.: 1995a, 'Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes', Geophys. Res. Lett. 22, 3397.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K. and Okada, M.: 1995b, 'Interplanetary original of Geomagnetic Activity in the Declining Phase of the Solar Cycle', J. Geophys. Res. 100, 21717.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Goldstein, B. E., Ho, C.M., Neugebauer, M., Smith, E. J., Balogh, A. and Feldman, W. C.: 1996, 'Interplanetary Discontinuities and Alfvén Waves at High Heliographic Latitudes: Ulysses', J. Geophys. Res. 101, 11027.

    Article  ADS  Google Scholar 

  • Tsurutani, B. T., Lakhina, G. S., Ho, C.M., Arballo, J. K., Galvan, G., Boonsiriseth, A., Pickett, J. S., Gumett, D. A., Peterson, W. K. and Thorne, R. M.: 1998, 'Broadband Plasma Waves Observed in the Polar Cap Boundary Layer', J. Geophys. Res. 103, in press.

  • Tsurutani, B. T., Kamide, Y., Gonzalez, W. D. and Lepping, R. P.: 1999a, 'Interplanetary Causes of Great and Superintense Magnetic Storms', Physics and Chemistry of the Earth, in press.

  • Tsurutani, B. T., Gonzalez, W. D., Thorne, R. M. and Kamide, Y.: 1999b, 'Comments on "Relation to Solar Activity of Intense Aurorae in Sunlight and Darkness" by T. T. Newell, C.-I. Meng and S. Wing', Nature, submitted.

  • Vandas, M., Fischer, S., Pclant, P. and Geranios, A.: 1993, 'Spheroidal Models of Magnetic Clouds and Their Comparison with Spacecraft Measurement', J. Geophys. Res. 98, 11467.

    ADS  Google Scholar 

  • Vandas, M., Fischer, S., Dryer, M., Smith, Z. and Detman, T.: 1998, 'Propagation of a Spheromak 2. Three-Dimensional Structure of a Spheromak', J. Geophys. Res. 103, 23717.

    Article  ADS  Google Scholar 

  • Weiss, L. A., Reiff, P. H., Moses, J. J. and Moore, B. D.: 1992, Energy Dissipation in Substorms, ESA SP-335, p. 309.

  • Winterhalter, D., Smith, E. J., Burton, M. E., Murphy, N. and McComas, D. J.: 1994, 'The Heliospheric Plasma Sheet', J. Geophys. Res. 99, 6667.

    Article  ADS  Google Scholar 

  • Zwan, B. J. and Wolf, R. A.: 1976, 'Depletion of the SolarWind Plasma Near a Planetary Boundary', J. Geophys. Res. 81, 1636.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, W.D., Tsurutani, B.T. & Clúa de Gonzalez, A.L. Interplanetary origin of geomagnetic storms. Space Science Reviews 88, 529–562 (1999). https://doi.org/10.1023/A:1005160129098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005160129098

Keywords

Navigation