Skip to main content
Log in

Inferring Lake Ice Status Using ICESat-2 Photon Data

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

Lake ice phenology is a temporally integrated response to the seasonal cycles of meteorology, and its study results in obtaining the periods of ice growth and melt process. The recently launched spaceborne laser altimetry satellite called Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) hosts a single sensor titled Advanced Topographic Laser Altimeter System (ATLAS) is equipped with photon-counting technology. In this research, we have investigated the applicability of a data product, namely ATL03 from the ICESat-2 to infer the state of alpine lake ice. Three alpine lakes situated in the Himalayan region, which are above 4200 m ASL and exhibit annual freeze–thaw cycles were studied to understand the interaction of ICESat-2 photons with the lake surface during various phases of the ice growth and decay process. Elevation profiles were generated from the photon beams of ICESat-2 over these lakes during various stages of its surface cover like meltwater conditions, ice thickening stage, frozen state, and ice breakup period. These elevation profiles besides giving the lake surface height, the pattern of photons in the profile has contributed to envisage the status of the ice surface over the lake. Photons from ICESat-2 during meltwater conditions can penetrate the subsurface, and this feature helps in distinguishing meltwater from frozen ice cover over the lake surface. Further, it was observed that during the stage of ice thickening stage, a certain number of photons have penetrated up to a depth of ~ 35 m but the number of photons that penetrated is significantly less when compared with that of penetrating photons during meltwater conditions. Similarly, during the ice breakup periods, the photon data of ICESat-2 are proven to identify the exposed water columns in the ice sheet. The results obtained from this study prove that the photon data from ICESat-2 over alpine lakes can result in advance the understanding of the lake ice phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The ICESat-2 datasets analysed in the current study are available from https://nsidc.org/data/icesat-2/data-sets and also through https://openaltimetry.org/data/icesat2/. Sentinel-2 data sets used in this research are available from https://earthexplorer.usgs.gov/.

References

  1. Ashton GD (1986) River and lake ice engineering. Water Resources Publication, Colorada

    Google Scholar 

  2. Ashton GD (2011) River and lake ice thickening, thinning, and snow ice formation. Cold Reg Sci Technol 68(1–2):3–19. https://doi.org/10.1016/j.coldregions.2011.05.004

    Article  Google Scholar 

  3. Beckers JF (2018) Altimeter retrievals of sea ice, lake ice and snow properties. Dept. of Earth and Atmospheric Sciences, University of Alberta. https://doi.org/10.7939/R3NP1X03N

  4. Bhat H, Mahapatra DM, Boominathan M et al (2010) Avian diversity of Ladakh wetlands. Bangalore: ENERGY and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science 1–5

  5. Bhat FA, Yousuf AR, Aftab A et al (2011) Ecology and biodiversity in Pangong Tso (lake) and its inlet stream in Ladakh, India. Int J Biodivers Conserv 3(10):501–511

    Google Scholar 

  6. Brown LC, Duguay CR (2012) Modelling lake ice phenology with an examination of satellite-detected subgrid cell variability. Adv Meteorol 529064. https://doi.org/10.1155/2012/529064

  7. Brown ME, Arias SD, Neumann TA et al (2016) Applications for ICESat-2 data: from NASA’s Early Adopter Program. IEEE Geosci Remote Sens Mag 4(4):24–37. https://doi.org/10.1109/MGRS.2016.2560759

    Article  Google Scholar 

  8. Cai Y, Ke CQ, Li X et al (2019) Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. J Geophys Res Atmos 124(2):825–843. https://doi.org/10.1029/2018JD028993

    Article  Google Scholar 

  9. Cao B, Fang Y, Gao L et al (2021) An active-passive fusion strategy and accuracy evaluation for shallow water bathymetry based on ICESat-2 ATLAS laser point cloud and satellite remote sensing imagery. Int J Remote Sens 42(8):2783–2806. https://doi.org/10.1080/01431161.2020.1862441

    Article  Google Scholar 

  10. Chang WY (1987) Large lakes of China. J Great Lakes Res 13(3):235–249. https://doi.org/10.1016/S0380-1330(87)71647-5

    Article  Google Scholar 

  11. Churnside JH, Tatarskii VV, Wilson JJ (1998) Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California Bight. Appl Opt 37(15):3105–3112. https://doi.org/10.1364/AO.37.003105

    Article  Google Scholar 

  12. Churnside JH (2013) Review of profiling oceanographic lidar. Opt Eng 53(5):051405. https://doi.org/10.1117/1.OE.53.5.051405

    Article  Google Scholar 

  13. Cooley SW, Ryan JC, Smith LC (2021) Human alteration of global surface water storage variability. Nature 591(7848):78–81. https://doi.org/10.1038/s41586-021-03262-3

    Article  Google Scholar 

  14. Dandabathula G, Verma M, Satyanarayana P et al (2020) Evaluation of ICESat-2 ATL08 data product: performance assessment in inland water. Eur J Environ Earth Sci 1(3):1–6. https://doi.org/10.24018/ejgeo.2020.1.3.15

  15. Dörnhöfer K, Oppelt N (2016) Remote sensing for lake research and monitoring–recent advances. Ecol Ind 64:105–122. https://doi.org/10.1016/j.ecolind.2015.12.009

    Article  Google Scholar 

  16. Dortch JM, Owen LA, Caffee MW et al (2011) Catastrophic partial drainage of Pangong Tso, Northern India and Tibet. Geomorphology 125(1):109–121. https://doi.org/10.1016/j.geomorph.2010.08.017

    Article  Google Scholar 

  17. Duguay CR, Bernier M, Gauthier Y et al (2015) Remote sensing of lake and river ice. Remote Sens Cryosphere 273–306. https://doi.org/10.1002/9781118368909.ch12

  18. EPA (2021) United States Environmental Protection Agency: climate change indicators: lake ice. https://www.epa.gov/climate-indicators/climate-change-indicators-lake-ice

  19. Essaf N (2017) Identifying glacial features with sentinel-2 data. Technical University of Delft

  20. Falkner P, Schulz R (2015) Instrumentation for planetary exploration missions. In: Schubert G (ed) Treatise on Geophysics. Elsevier, Amsterdam, pp 719–755

    Chapter  Google Scholar 

  21. Fricker HA, Arndt P, Brunt KM et al (2021) ICESat-2 meltwater depth estimates: application to surface melt on Amery Ice Shelf, East Antarctica. Geophys Res Lett 48(8):e2020GL090550. https://doi.org/10.1029/2020GL090550

    Article  Google Scholar 

  22. Gasse F, Fontes JC, Van Campo E et al (1996) Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: Discussion and Conclusions. Palaeogeogr Palaeoclimatol Palaeoecol 120(1–2):79–92. https://doi.org/10.1016/0031-0182(95)00035-6

    Article  Google Scholar 

  23. Godwin-Austen HH (1867) Notes on the Pangong lake district of Ladakh, from a journal made during a survey in 1863. J R Geogr Soc Lond 37:343–363

    Google Scholar 

  24. Gunn GE, Duguay CR, Brown LC et al (2015) Freshwater lake ice thickness derived using surface-based X-and Ku-band FMCW scatterometers. Cold Reg Sci Technol 120:115–126. https://doi.org/10.1016/j.coldregions.2015.09.012

    Article  Google Scholar 

  25. Gupta SK, Shukla DP (2016) Assessment of land use/land cover dynamics of Tso Moriri Lake, a Ramsar site in India. Environ Monit Assess 188(12):1–13. https://doi.org/10.1007/s10661-016-5707-3

    Article  Google Scholar 

  26. Huntington E (1906) Pangong: a glacial lake in the Tibetan Plateau. J Geol 14(7):599–617

    Article  Google Scholar 

  27. ICESAT-2 Data Sets (2018) ICESat-2 data sets at NSIDC. https://nsidc.org/data/icesat-2/data-sets

  28. Jasinski MF, Stoll JD, Cook WB et al (2016) Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL). J Coast Res 76:44–55. https://doi.org/10.2112/si76-005

    Article  Google Scholar 

  29. Jasinski MF, Stoll JD, Hancock D et al (2020) Algorithm Theoretical Basis Document (ATBT) for Inland Water Data Prodcuts, ATL13, Ver. 3. NASA Goddard Space flight Centre, Greenbelt, MD, 112pp. https://nsidc.org/sites/nsidc.org/files/technical-references/ICESat2_ATL13_Known_Issues_v003_Aug2020.pdf

  30. Jeffries MO, Morris K, Duguay CR (2005) Lake ice growth and decay in central Alaska, USA: observations and computer simulations compared. Ann Glaciol 40:195–199. https://doi.org/10.3189/172756405781813807

    Article  Google Scholar 

  31. Joshi P, Phartiyal B, Joshi M (2020) Hydro-climatic variability during last five thousand years and its impact on human colonization and cultural transition in Ladakh sector, India. Quatern Int 599–600:45–54. https://doi.org/10.1016/j.quaint.2020.09.053

    Article  Google Scholar 

  32. Khalsa SJS, Borsa A, Nandigam V et al (2020) OpenAltimetry-rapid analysis and visualization of spaceborne altimeter data. Earth Sci Inf. https://doi.org/10.1007/s12145-020-00520-2

    Article  Google Scholar 

  33. Kirillin G, Leppäranta M, Terzhevik A et al (2012) Physics of seasonally ice-covered lakes: a review. Aquat Sci 74(4):659–682. https://doi.org/10.1007/s00027-012-0279-y

    Article  Google Scholar 

  34. Kirillin GB, Shatwell T, Wen L (2021) Ice-covered lakes of Tibetan Plateau as solar heat collectors. Geophys Res Lett 48(14):e2021GL093429. https://doi.org/10.1029/2021GL093429

    Article  Google Scholar 

  35. König M, Hieronymi M, Oppelt N (2019) Application of Sentinel-2 MSI in Arctic research: evaluating the performance of atmospheric correction approaches over Arctic sea ice. Front Earth Sci 7(22). https://doi.org/10.3389/feart.2019.00022

  36. Korhonen J (2006) Long-term changes in lake ice cover in Finland. Hydrol Res 37(4–5):347–363. https://doi.org/10.2166/nh.2006.019

    Article  Google Scholar 

  37. Leipe C, Demske D, Tarasov PE et al (2014) A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quatern Int 348:93–112. https://doi.org/10.1016/j.quaint.2013.05.005

    Article  Google Scholar 

  38. Leppäranta M (2010) Modelling the formation and decay of lake ice. In: George G (ed) The impact of climate change on European lakes. Springer, Dordrecht, pp 63–83

    Chapter  Google Scholar 

  39. Leppäranta M (2014) Freezing of lakes and the evolution of their ice cover. Springer Science & Business Media

  40. Livingstone DM, Adrian R, Blenckner T et al (2010) Lake ice phenology. In: George G (ed) The impact of climate change on European lakes. Springer, Dordrecht, pp 51–61

    Chapter  Google Scholar 

  41. Ma Y, Xu N, Sun J, Wang XH, Yang F, Li S (2019) Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sens Environ 232:111287. https://doi.org/10.1016/j.rse.2019.111287

    Article  Google Scholar 

  42. Magnuson JJ, Robertson DM, Benson BJ et al (2000) Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289(5485):1743–1746. https://doi.org/10.1126/science.289.5485.1743

    Article  Google Scholar 

  43. Markus T, Neumann TA, Martino A et al (2017) The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens Environ 190:260–273. https://doi.org/10.1016/j.rse.2016.12.029

    Article  Google Scholar 

  44. Michel B (1972) Properties and processes of river and lake ice. In: Proceedings ofthe IAHS Symposium on the Role of Snow and Ice in Hydrology, Banff, Alberta, p.451–482

  45. Michel B, Ramseier RO (1971) Classification of river and lake ice. Can Geotech J 8(1):36–45. https://doi.org/10.1139/t71-004

    Article  Google Scholar 

  46. Mishra PK, Anoop A, Jehangir A et al (2014) Limnology and modern sedimentation patterns in high altitude Tso Moriri Lake, NW Himalaya–implications for proxy development. Fundam Appl Limnol/Archiv für Hydrobiol 185(3):329–348. https://doi.org/10.1127/fal/2014/0664

    Article  Google Scholar 

  47. Mishra PK, Anoop A, Schettler G et al (2015) Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quatern Int 371:76–86. https://doi.org/10.1016/j.quaint.2014.11.040

    Article  Google Scholar 

  48. Mishra PK, Prasad S, Anoop A et al (2015) Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes. Palaeogeogr Palaeoclimatol Palaeoecol 425:76–83. https://doi.org/10.1016/j.palaeo.2015.02.031

    Article  Google Scholar 

  49. Mishra PK, Prasad S, Jehangir A et al (2018) Investigating the role of meltwater versus precipitation seasonality in abrupt lake-level rise in the high-altitude Tso Moriri Lake (India). Palaeogeogr Palaeoclimatol Palaeoecol 493:20–29. https://doi.org/10.1016/j.palaeo.2017.12.026

    Article  Google Scholar 

  50. Mullen PC, Warren SG (1988) Theory of the optical properties of lake ice. J Geophys Res Atmos 93(D7):8403–8414. https://doi.org/10.1029/JD093iD07p08403

    Article  Google Scholar 

  51. Murfitt J, Brown LC, Howell SE (2018) Evaluating RADARSAT-2 for the monitoring of lake ice phenology events in mid-latitudes. Remote Sens 10(10):1641. https://doi.org/10.3390/rs10101641

    Article  Google Scholar 

  52. Negi SS (2002) Cold deserts of India. Indus Publishing, India

    Google Scholar 

  53. Neumann TA, Brenner A, Hancock D et al (2018) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) project: Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons:ATL03. National Aeronautics and Space Administration, Goddard Space Flight Center. Greenbelt, MD, USA. https://icesat-2.gsfc.nasa.gov/sites/default/files/files/ATL03_05June2018.pdf

  54. Neumann TA, Martino AJ, Markus T et al (2019) The Ice, Cloud, and Land Elevation Satellite–2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sens Environ 233:111325. https://doi.org/10.1016/j.rse.2019.111325

    Article  Google Scholar 

  55. Neumann TA, Brenner A, Hancock D et al (2021) ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL03.004

  56. NSIDC-ICESat-2 (2018) National Snow & Ice Data Centre – ICESat-2. https://nsidc.org/data/icesat-2

  57. Ohata Y, Toyota T, Fraser AD (2017) The role of snow in the thickening processes of lake ice at Lake Abashiri, Hokkaido, Japan. Tellus A Dyn Meteorol Oceanogr 69(1):1391655. https://doi.org/10.1080/16000870.2017.1391655

    Article  Google Scholar 

  58. Pachauri RK, Allen MR, Barros VR et al (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). IPCC

  59. Palecki MA, Barry RG (1986) Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland. J Appl Meteorol Climatol 25(7):893–902. https://www.jstor.org/stable/26182468

  60. Parrish CE, Magruder LA, Neuenschwander AL et al (2019) Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens 11(14):1634. https://doi.org/10.3390/rs11141634

    Article  Google Scholar 

  61. Paul F, Winsvold SH, Kääb A et al (2016) Glacier remote sensing using Sentinel-2. Part II: mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens 8(7):575. https://doi.org/10.3390/rs8070575

    Article  Google Scholar 

  62. Phartiyal B, Singh R, Kothyari GC (2015) Late-Quaternary geomorphic scenario due to changing depositional regimes in the Tangtse Valley, Trans-Himalaya, NW India. Palaeogeogr Palaeoclimatol Palaeoecol 422:11–24. https://doi.org/10.1016/j.palaeo.2015.01.013

    Article  Google Scholar 

  63. Phiri D, Simwanda M, Salekin S et al (2020) Sentinel-2 data for land cover/use mapping: a review. Remote Sens 12(14):2291. https://doi.org/10.3390/rs12142291

    Article  Google Scholar 

  64. Pointner G, Bartsch A, Dvornikov YA et al (2021) Mapping potential signs of gas emissions in ice of Lake Neyto, Yamal, Russia, using synthetic aperture radar and multispectral remote sensing data. Cryosphere 15(4):1907–1929. https://doi.org/10.5194/tc-15-1907-2021

    Article  Google Scholar 

  65. Prasad S, Mishra PK, Menzel P et al (2016) Testing the validity of productivity proxy indicators in high altitude Tso Moriri Lake, NW Himalaya (India). Palaeogeogr Palaeoclimatol Palaeoecol 449:421–430. https://doi.org/10.1016/j.palaeo.2016.02.027

    Article  Google Scholar 

  66. Prasad S, Marwan N, Eroglu D et al (2020) Holocene climate forcings and lacustrine regime shifts in the Indian summer monsoon realm. Earth Surf Proc Land 45(15):3842–3853. https://doi.org/10.1002/esp.5004

    Article  Google Scholar 

  67. Qi M, Liu S, Yao X et al (2020) Monitoring the ice phenology of Qinghai lake from 1980 to 2018 using multisource remote sensing data and Google Earth Engine. Remote Sens 12(14):2217. https://doi.org/10.3390/rs12142217

    Article  Google Scholar 

  68. Qiu Y, Wang X, Leppäranta M, et al (2021) Lake ice phenology changes in the northern hemisphere. In: EGU General Assembly Conference. pp. EGU21–15155.

  69. Ramsar (2014) Ramsar. https://www.ramsar.org

  70. Sentinel-2 (2020) Sentinel-2 Online. https://sentinel.esa.int/web/sentinel/missions/sentinel-2

  71. Shu S, Liu H, Frappart F et al (2018) Estimation of snow accumulation over frozen Arctic lakes using repeat ICESat laser altimetry observations–a case study in northern Alaska. Remote Sens Environ 216:529–543. https://doi.org/10.1016/j.rse.2018.07.018

    Article  Google Scholar 

  72. Smith B, Fricker HA, Gardner AS et al (2020) Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368(6496):1239–1242. https://doi.org/10.1126/science.aaz5845

    Article  Google Scholar 

  73. Spencer P, Miller AE, Reed B et al (2008) Monitoring lake ice seasons in Southwest Alaska with MODIS images. In: Proceedings of the Pecora Conference, Denver, CO, USA pp. 18–20

  74. Srikantia SV, Ganesan TM, Wangdus C (1982) A note on the tectonic framework and geologic set-up of the Pangong-Chushul sector, Ladakh Himalaya. J Geol Soc India 23(7):354–357

    Google Scholar 

  75. Srivastava P, Bhambri R, Kawishwar P et al (2013) Water level changes of high altitude lakes in Himalaya-Karakoram from ICESat altimetry. J Earth Syst Sci 122(6):1533–1543. https://doi.org/10.1007/s12040-013-0364-1

    Article  Google Scholar 

  76. Srivastava P, Kumar A, Singh R et al (2020) Rapid lake level fall in Pangong Tso (lake) in Ladakh, NW Himalaya: a response of late Holocene aridity. Curr Sci 119(2):219–231. https://doi.org/10.18520/cs/v119/i2/219-231

  77. Wang S, Yang B, Zhou Y et al (2018) Snow cover mapping and ice avalanche monitoring form the satellite data of the Sentinels. Int Arch Photogramm Remote Sens Spatial Inf Sci 42(3). https://doi.org/10.5194/isprs-archives-XLII-3-1765-2018

  78. Wangchuk S, Bolch T (2020) Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: strengths and challenges. Sci Remote Sens 2:100008. https://doi.org/10.1016/j.srs.2020.100008

    Article  Google Scholar 

  79. Warren SG (2019) Optical properties of ice and snow. Phil Trans R Soc A 377(2146):20180161. https://doi.org/10.1098/rsta.2018.0161

    Article  Google Scholar 

  80. Weber H, Riffler M, Nõges T et al (2016) Lake ice phenology from AVHRR data for European lakes: an automated two-step extraction method. Remote Sens Environ 174:329–340. https://doi.org/10.1016/j.rse.2015.12.014

    Article  Google Scholar 

  81. Wei QF, Ye QH (2010) Review of lake ice monitoring by remote sensing. Progress Geogr 29(7):803–810. https://doi.org/10.11820/dlkxjz.2010.07.005

  82. WorldView (2021) EOSDIS WorldView. https://worldview.earthdata.nasa.gov

  83. Xu N, Zheng H, Ma Y, Yang J, Liu X, Wang X (2021) Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products. Remote Sens 13(14):2744. https://doi.org/10.3390/rs13142744

    Article  Google Scholar 

  84. Yan Y, Xu H, Liu G et al (2019) Analysis of the variations of the lake ice phenology in the Pangong Lake area from 2013 to 2017: remote sensing survey of the cryosphere in the high altitude and alpine region, West China(I). Remote Sens Land Resour 31(3):209–215. https://doi.org/10.6046/gtzyyg.2019.03.26

    Article  Google Scholar 

  85. Yuan C, Gong P, Bai Y (2020) Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sens 12(5):770. https://doi.org/10.3390/rs12050770

    Article  Google Scholar 

  86. Zakharova E, Agafonova S, Duguay C et al (2020) River ice phenology and thickness from satellite altimetry. Potential for ice bridge road operation. Cryosphere Discuss. https://doi.org/10.5194/tc-2020-325

  87. Zhang S, Pavelsky TM (2019) Remote sensing of lake ice phenology across a range of lakes sizes, ME, USA. Remote Sens 11(14):1718. https://doi.org/10.3390/rs11141718

    Article  Google Scholar 

  88. Zhang S, Pavelsky TM, Arp CD et al (2021) Remote sensing of lake ice phenology in Alaska. Environ Res Lett 16(6):064007. https://doi.org/10.1088/1748-9326/abf965

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express special thanks to the Director of the National Remote Sensing Centre, Indian Space Research Organisation, Hyderabad for facilitating the institutional support and providing basic infrastructure for this work. The authors would also like to express their sincere gratitude to all the scientific and administrative staff of RRSC-West, NRSC, ISRO, Jodhpur for providing valuable encouragement towards completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giribabu Dandabathula.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandabathula, G., Bera, A.K., Sitiraju, S.R. et al. Inferring Lake Ice Status Using ICESat-2 Photon Data. Remote Sens Earth Syst Sci 4, 264–279 (2021). https://doi.org/10.1007/s41976-022-00067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-022-00067-4

Keywords

Navigation