Skip to main content
Log in

Quantification of Cardiomyocyte Contraction In Vitro and Drug Screening by MyocytoBeats

  • Methods Paper
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiomyocyte contractility is the crucial feature of heart function. Quantifying cardiomyocyte contraction in vitro is essential for disease phenotype characterization, mechanism illumination, and drug screening. Although many experimental methods have been employed to determine contraction dynamics in vitro, a time-saving and easy-to-use software is still needed to be developed. We presented a reliable tool, named MyocytoBeats, to measure cardiomyocyte contraction by processing recorded videos. Analysis results by MyocytoBeats of various experimental models have shown a significant linear relationship with another validated software. We also performed pharmacology screen in the platform, and astragaloside IV was identified to stabilize the frequency and amplitude of cardiomyocyte in the arrhythmia model. MyocytoBeats is a high-performance tool for generating cardiomyocyte contraction data of vitro study and shows a great potential in cardiac pharmacology study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The source code of MyocytoBeats is avaliable upon required.

References

  1. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    CAS  PubMed  Google Scholar 

  2. Wu X, Chang B, Blair NS, Sargent M, York AJ, Robbins J, Shull GE, Molkentin JD. plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents. J Clin Invest. 2009;119(4):976–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Belostotskaya GB, Golovanova TA. Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells: a model of in vitro cardiomyogenesis. Cell Cycle. 2014;13(6):910–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell. 2022;13(5):336–59.

    CAS  PubMed  Google Scholar 

  5. Zhang H, Pei L, Ouyang Z, Wang H, Chen X, Jiang K, Huang S, Jiang R, Xiang Y, Wei K. AP-1 activation mediates postnatal cardiomyocyte maturation. Cardiovasc Res. 2022;cvac088. Advance online publication.

  6. Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge PW, Patlolla B, Lee AS, Wu H, Beygui RE, Wu SM, Robbins RC, Bers DM, Wu JC. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 2013;128(11 Suppl 1):S3-13.

    CAS  PubMed  Google Scholar 

  7. Karakikes I, Ameen M, Termglinchan V, Wu JC. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res. 2015;117(1):80–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kitani T, Ong SG, Lam CK, Rhee JW, Zhang JZ, Oikonomopoulos A, Ma N, Tian L, Lee J, Telli ML, Witteles RM, Sharma A, Sayed N, Wu JC. Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation. 2019;139(21):2451–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shinnawi R, Shaheen N, Huber I, Shiti A, Arbel G, Gepstein A, Ballan N, Setter N, Tijsen AJ, Borggrefe M, Gepstein L. Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets. J Am Coll Cardiol. 2019;73(18):2310–24.

    PubMed  Google Scholar 

  10. Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun. 2020;11(1):4283.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoang P, Kowalczewski A, Sun S, Winston TS, Archilla AM, Lemus SM, Ercan-Sencicek AG, Gupta AR, Liu W, Kontaridis MI, Amack JD, Ma Z. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports. 2021;16(5):1228–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldfracht I, Efraim Y, Shinnawi R, Kovalev E, Huber I, Gepstein A, Arbel G, Shaheen N, Tiburcy M, Zimmermann WH, Machluf M, Gepstein L. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater. 2019;92:145–59.

    CAS  PubMed  Google Scholar 

  13. Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev. 2016;96:214–24.

    CAS  PubMed  Google Scholar 

  14. Fowler ED, Wang N, Hezzell M, Chanoit G, Hancox JC, Cannell MB. Arrhythmogenic late Ca(2+) sparks in failing heart cells and their control by action potential configuration. Proc Natl Acad Sci U S A. 2020;117(5):2687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Luongo TS, Lambert JP, Gross P, Nwokedi M, Lombardi AA, Shanmughapriya S, Carpenter AC, Kolmetzky D, Gao E, van Berlo JH, Tsai EJ, Molkentin JD, Chen X, Madesh M, Houser SR, Elrod JW. The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+) homeostasis and viability. Nature. 2017;545(7652):93–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, O’Rourke B, Maack C. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121(14):1606–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q, Choe HS, Tian B, Jiang X, Lieber CM. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat Nanotechnol. 2011;7(3):174–9.

    PubMed  PubMed Central  Google Scholar 

  18. van Meer BJ, Tertoolen LG, Mummery CL. Concise review: measuring physiological responses of human pluripotent stem cell derived cardiomyocytes to drugs and disease. Stem Cells. 2016;34(8):2008–15.

    PubMed  Google Scholar 

  19. Scalzo S, Afonso MQL, da Fonseca NJ Jr, Jesus ICG, Alves AP, Mendonca C, Teixeira VP, Biagi D, Cruvinel E, Santos AK, Miranda K, Marques FAM, Mesquita ON, Kushmerick C, Campagnole-Santos MJ, Agero U, Guatimosim S. Dense optical flow software to quantify cellular contractility. Cell Rep Methods. 2021;1(4):100044.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sala L, van Meer BJ, Tertoolen LGJ, Bakkers J, Bellin M, Davis RP, Denning C, Dieben MAE, Eschenhagen T, Giacomelli E, Grandela C, Hansen A, Holman ER, Jongbloed MRM, Kamel SM, Koopman CD, Lachaud Q, Mannhardt I, Mol MPH, Mosqueira D, Orlova VV, Passier R, Ribeiro MC, Saleem U, Smith GL, Burton FL, Mummery CL. MUSCLEMOTION: a versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circ Res. 2018;122(3):e5–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayakawa T, Kunihiro T, Ando T, Kobayashi S, Matsui E, Yada H, Kanda Y, Kurokawa J, Furukawa T. Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: correlation and complementarity with extracellular electrophysiology. J Mol Cell Cardiol. 2014;77:178–91.

    CAS  PubMed  Google Scholar 

  22. Steadman BW, Moore KB, Spitzer KW, Bridge JH. A video system for measuring motion in contracting heart cells. IEEE Trans Biomed Eng. 1988;35(4):264–72.

    CAS  PubMed  Google Scholar 

  23. Ribeiro AJS, Schwab O, Mandegar MA, Ang YS, Conklin BR, Srivastava D, Pruitt BL. Multi-imaging method to assay the contractile mechanical output of micropatterned human iPSC-derived cardiac myocytes. Circ Res. 2017;120(10):1572–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen A, Lee E, Tu R, Santiago K, Grosberg A, Fowlkes C, Khine M. Integrated platform for functional monitoring of biomimetic heart sheets derived from human pluripotent stem cells. Biomaterials. 2014;35(2):675–83.

    CAS  PubMed  Google Scholar 

  25. Horn BKP, Schunck BG. Determining optical flow. Artif Intell. 1981;17(1):185–203.

    Google Scholar 

  26. Deng R, Jiang K, Chen F, Miao Y, Lu Y, Su F, Liang J, Qian J, Wang D, Xiang Y, Shen L. Novel cardioprotective mechanism for empagliflozin in nondiabetic myocardial infarction with acute hyperglycemia. Biomed Pharmacother. 2022;154:113606.

    CAS  PubMed  Google Scholar 

  27. Jiang K, Tu Z, Chen K, Xu Y, Chen F, Xu S, Shi T, Qian J, Shen L, Hwa J, Wang D, Xiang Y. Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. J Clin Invest. 2022;132(1):e151268.

  28. Santos-Ribeiro A, Nutt DJ, McGonigle J. Inertial demons: a momentum-based diffeomorphic registration framework. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W, editors. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Cham: Springer International Publishing; 2016. p. 37–45.

    Google Scholar 

  29. Hasenfuss G, Holubarsch C, Blanchard EM, Mulieri LA, Alpert NR, Just H. Influence of isoproterenol on myocardial energetics Experimental and clinical investigations. Basic Res Cardiol. 1989;84(Suppl 1):147–55.

    PubMed  Google Scholar 

  30. Fehrentz T, Huber FME, Hartrampf N, Bruegmann T, Frank JA, Fine NHF, Malan D, Danzl JG, Tikhonov DB, Sumser M, Sasse P, Hodson DJ, Zhorov BS, Klocker N, Trauner D. Optical control of L-type Ca(2+) channels using a diltiazem photoswitch. Nat Chem Biol. 2018;14(8):764–7.

    CAS  PubMed  Google Scholar 

  31. Gallenberg LA, Stowe DF, Marijic J, Kampine JP, Bosnjak ZJ. Depression of atrial rate, atrioventricular nodal conduction, and cardiac contraction by diltiazem and volatile anesthetics in isolated hearts. Anesthesiology. 1991;74(3):519–30.

    CAS  PubMed  Google Scholar 

  32. Helmy I, Scheinman MM, Herre JM, Sharkey H, Griffin JC. Electrophysiologic effects of isoproterenol in patients with atrioventricular reentrant tachycardia treated with flecainide. J Am Coll Cardiol. 1990;16(7):1649–55.

    CAS  PubMed  Google Scholar 

  33. Butler L, Cros C, Oldman KL, Harmer AR, Pointon A, Pollard CE, Abi-Gerges N. Enhanced characterization of contractility in cardiomyocytes during early drug safety assessment. Toxicol Sci. 2015;145(2):396–406.

    CAS  PubMed  Google Scholar 

  34. El-Ani D, Jacobson KA, Shainberg A. Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol. 1994;48(4):727–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lam CK, Tian L, Belbachir N, Wnorowski A, Shrestha R, Ma N, Kitani T, Rhee JW, Wu JC. Identifying the transcriptome signatures of calcium channel blockers in human induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2019;125(2):212–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma A, McKeithan WL, Serrano R, Kitani T, Burridge PW, Del Alamo JC, Mercola M, Wu JC. Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat Protoc. 2018;13(12):3018–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Campostrini G, Windt LM, van Meer BJ, Bellin M, Mummery CL. Cardiac tissues from stem cells: new routes to maturation and cardiac regeneration. Circ Res. 2021;128(6):775–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Murry CE. Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation. 2016;134(20):1557–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao Z, Wang W, Wang F, Zhao K, Han Y, Xu W, Tang L. Effects of astragaloside IV on heart failure in rats. Chin Med. 2009;4:6.

    PubMed  PubMed Central  Google Scholar 

  41. Lin X, Wang Q, Sun S, Xu G, Wu Q, Qi M, Bai F, Yu J. Astragaloside IV promotes the eNOS/NO/cGMP pathway and improves left ventricular diastolic function in rats with metabolic syndrome. J Int Med Res. 2020;48(1):300060519826848.

    CAS  PubMed  Google Scholar 

  42. Zang Y, Wan J, Zhang Z, Huang S, Liu X, Zhang W. An updated role of astragaloside IV in heart failure. Biomed Pharmacother. 2020;126:110012.

    CAS  PubMed  Google Scholar 

  43. Yu SY, Ouyang HT, Yang JY, Huang XL, Yang T, Duan JP, Cheng JP, Chen YX, Yang YJ, Qiong P. Subchronic toxicity studies of Radix Astragali extract in rats and dogs. J Ethnopharmacol. 2007;110(2):352–5.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFC1700402), the National Natural Science Foundation of China (82270350), fundamental Research Funds for the Central Universities (22120220162), and the Frontier Science Research Center for Stem Cells, Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

YX designed the experiments. ZC, YY, KJ, and XY performed the in vitro experiments. ZC, YY, and HYN wrote the MATLAB code. ZC, YY, and ZT analyzed the data. YX, ZC, and HN drafted the article. YX, YY, ZT, and JL revised the manuscript. All the authors read and approved the final manuscript. ZY and YY are co-first authors based on their distinct contributions.

Corresponding author

Correspondence to Yaozu Xiang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Clinical Relevance Statement

MyocytoBeats is a low-cost and high-performance platform to analyze the contraction profile of cardiomyocytes in experimental and clinical settings. Quantifying contraction from various animal models, hiPSC-CM, and cardiac organoids provide an approach for drug screening and cardiac cardiotoxicity assessment. And generating contraction profiles of hiPSC-CM derived from patients of genetic or acquired heart disease could provide clinically relevant insights into disease mechanism and treatment strategies.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Yang, Y., Jiang, K. et al. Quantification of Cardiomyocyte Contraction In Vitro and Drug Screening by MyocytoBeats. J. of Cardiovasc. Trans. Res. 16, 758–767 (2023). https://doi.org/10.1007/s12265-023-10357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10357-x

Keywords

Navigation