Skip to main content

Advertisement

Log in

The Role of Genetics in Peripartum Cardiomyopathy

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Peripartum cardiomyopathy (PPCM) is an uncommon complication of pregnancy. Early case reports identified overlap between familial dilated cardiomyopathy (DCM) and PPCM, although the degree of overlap is largely unknown. Other evidence supporting a contribution from gene mutations in PPCM includes familial occurrence, genome-wide association studies, variable prevalence among different regions and ethnicities, and more recent investigations of panels of genes for mutations among women with PPCM. Murine models implicate the role of altered metabolism and increased free radical stress to the heart during pregnancy, which seems to be involved in the pathogenesis of this condition. Although the true incidence of genetic cardiomyopathy is not yet known among women with PPCM, there is substantial evidence demonstrating that at least 10–15% of affected women have a clear genetic contribution to their condition. With this in mind, family counseling, cascade phenotypic screening, and clinical genetic testing should be considered among women with PPCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Virchow, R. Sitzing der Berliner Geburtshilflisher Gersellskhalt, cited by Porak, C. (1880). De l'influence réciproque de la grossesse et des maladies du Coeur, thesis, Paris.

  2. Ritchie, C. (1850). Clinical contribution to the patho-diagnosis and treatment of certain chronic diseases of the heart. Edinburgh Medical Journal, 2, 2.

    Google Scholar 

  3. Porak, C. (1880). De l'influence réciproque de la grossesse et des maladies du Coeur, thesis, Paris.

  4. Gouley, B. A., McMillan, T. M., & bellet S. (1937). Idiopathic myocardial degeneration associated with pregnancy and especially the puerperium. The American Journal of the Medical Sciences, 19, 185–199.

    Article  Google Scholar 

  5. Abboud, J., Murad, Y., Chen-Scarabelli, C., Saravolatz, L., & Scarabelli, T. M. (2007). Peripartum cardiomyopathy: a comprehensive review. International Journal of Cardiology, 118(3), 295–303.

    Article  Google Scholar 

  6. Demakis, J. G., Rahimtoola, S. H., Sutton, G. C., et al. (1971). Natural course of peripartum cardiomyopathy. Circulation, 44, 1053–1061.

    Article  CAS  Google Scholar 

  7. Pearson, G. D., Veille, J. C., Rahimtoola, S., et al. (2000). Peripartum cardiomyopathy. National Heart Lung and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA, 283, 1183–1188.

    Article  CAS  Google Scholar 

  8. Sliwa, K., Fett, J., & Elkayam, U. (2000). Peripartum cardiomyopathy. Lancet, 368, 687–693.

    Article  Google Scholar 

  9. Sebillotte, C. G., Deligny, C., Hanf, M., Santiago, R., Chevallier, J. C., Volumenie, J. L., & Arfi, S. (2010). Is African descent an independent risk factor of peripartum cardiomyopathy? International Journal of Cardiology, 145, 93–94.

    Article  Google Scholar 

  10. Elkayam, U., Akhter, M. W., Singh, H., Khan, S., Bitar, F., Hameed, A., & Shotan, A. (2005). Pregnancy-associated cardiomyopathy: clinical characteristics and a comparison between early and late presentation. Circulation, 111, 2050–2055.

    Article  Google Scholar 

  11. Liu, L. X., & Arany, Z. (2014). Maternal cardiac metabolism in pregnancy. Cardiovascular Research, 101, 545–553.

    Article  CAS  Google Scholar 

  12. Chung, E., & Leinwand, L. A. (2014). Pregnancy as a cardiac stress model. Cardiovascular Research, 101, 561–570.

    Article  CAS  Google Scholar 

  13. Ansari, A. A., Fett, J. D., Carraway, R. E., Mayne, A. E., Onlamoon, N., & Sundstrom, B. (2002). Autoimmune mechanisms as the basis for human peripartum cardiomyopathy. Clinical Reviews in Allergy and Immunology, 23, 301–324.

    Article  CAS  Google Scholar 

  14. Ntusi, N. B., & Mayosi, B. M. (2009). Aetiology and risk factors of peripartum cardiomyopathy: a systematic review. International Journal of Cardiology, 131, 168–179.

    Article  Google Scholar 

  15. Pierce, J. A., Price, B. O., & Joyce, J. W. (1963). Familial occurrence of postpartal heart failure. Archives of Internal Medicine, 111, 651–655.

    Article  CAS  Google Scholar 

  16. Hughes, R. A. C., Kapur, P., Sutton, G. C., & Honey, M. (1970). A case of fatal peripartum cardiomyopathy. British Heart Journal, 32, 272–276.

    Article  CAS  Google Scholar 

  17. Honey, M. (1986). Correspondence: a case of fatal peripartum cardiomyopathy. British Heart Journal, 55, 114.

    Article  CAS  Google Scholar 

  18. Voss, E. G., Reddy, C. V. R., Detrano, R., Virmani, R., Zabriskie, J. B., & Fotino, M. (1984). Familial dilated cardiomyopathy. The American Journal of Cardiology, 54, 456–457.

    Article  CAS  Google Scholar 

  19. Massad, L. S., Reiss, C. K., Mutch, D. G., & Haskel, E. J. (1993). Familial peripartum cardiomyopathy after molar pregnancy. Obstetrics and Gynecology, 81, 886–888.

    CAS  PubMed  Google Scholar 

  20. Pearl, W. (1995). Familial occurrence of peripartum cardiomyopathy. American Heart Journal, 129, 421–422.

    Article  CAS  Google Scholar 

  21. van Spaendonck-Zwarts, K. Y., van Tintelen, J. P., van Veldhuisen, D. J., van der Werf, R., Jongbloed, J. D. H., Paulus, W. J., Dooijes, D., & van den Berg, P. (2010). Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation, 121, 2169–2175.

    Article  Google Scholar 

  22. Mestroni, L., Krajinovic, M., Severini, G. M., Pinamonti, B., Lenarda, A. D., Giacca, M., Falaschi, A., & Camerini, F. (1994). Familial dilated cardiomyopathy. British Heart Journal, 72(Supplement), S35–S41.

    Article  CAS  Google Scholar 

  23. Morales, A., Painter, T., Li, R., Siegfried, J. D., Li, D., Norton, N., & Hershberger, R. E. (2010). Rare variant mutations in pregnancy-associated or peripartum cardiomyopathy. Circulation, 121, 2176–2182.

    Article  CAS  Google Scholar 

  24. Gerull, B. (2015). The rapidly evolving role of titin in cardiac physiology and cardiomyopathy. The Canadian Journal of Cardiology, 31, 1351–1359.

    Article  Google Scholar 

  25. Trinick, K., Knight, P., & Whiting, A. (1984). Purification and properties of native titin. Journal of Molecular Biology, 180, 331–356.

    Article  CAS  Google Scholar 

  26. Herman, D. S., Lam, L., Taylor, M. R., et al. (2012). Truncations of titin causing dilated cardiomyopathy. The New England Journal of Medicine, 366, 619–628.

    Article  CAS  Google Scholar 

  27. Akinrinade, O., Koskenvuo, J. W., & Alastalo, T.-P. (2015). Prevalence of titin truncating variants in general population. PloS One, 10(12), e0145284.

    Article  Google Scholar 

  28. Roberts, A. M., Ware, J. S., Herman, D. S., Schafer, S., Baksi, J., Bick, A. G., Buchan, R. J., Walsh, R., et al. (2015). Integrated allelic, transcriptional and phenomic dissection of the cardiac effects of titin truncation in health and disease. Science Translational Medicine, 7(270), 270ra6.

    Article  Google Scholar 

  29. Pugh, T. J., Kelly, M. A., Gowrisankar, S., Hynes, E., Seidman, M. A., et al. (2014). The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genetics in Medicine, 16(8), 601–608.

    Article  CAS  Google Scholar 

  30. Haas, J., Frese, K. S., Peil, B., Kloos, W., Keller, A., Nietsch, R., Feng, Z., Muller, S., et al. (2015). Atlas of the clinical genetics of human dilated cardiomyopathy. European Heart Journal, 36, 1123–1135.

    Article  CAS  Google Scholar 

  31. van Spaendonck-Zwarts, K. Y., Posafalvi, A., van den Berg, M. P., Hilfiker-Kleiner, D., Bollen, I. A. E., Sliwa, K., et al. (2014). Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. European Heart Journal, 35, 2165–2173.

    Article  Google Scholar 

  32. Ware, J. S., Li, J., Mazaika, E., Yasso, C. M., DeSouza, T., Cappola, T. P., Tsai, E. J., Hilfiker-Kleiner, D., et al. (2016). Shared genetic predisposition in peripartum and dilated cardiomyopathies. The New England Journal of Medicine, 374, 233–241.

    Article  CAS  Google Scholar 

  33. McNamara, D. M., Elkayam, U., Alharethi, R., et al. (2015). Clinical outcomes for peripartum cardiomyopathy in North America: results of the Investigations of Pregnancy Associated Cardiomyopathy (IPAC) study. Journal of the American College of Cardiology, 66, 905–914.

    Article  Google Scholar 

  34. Davies, J. E., Winokur, T. S., Aaron, M. F., Benza, R. L., Foley, B. A., & Holman, W. L. (2001). Cardiomyopathy in a carrier of Duchenne’s muscular dystrophy. Journal of Heart and Lung Transplantation, 20(7), 781–784.

    Article  CAS  Google Scholar 

  35. Politano, L., Nigro, V., Nigro, G., Petretta, V. R., Passamano, L., Papparella, S., Di Somma, S., & Comi, L. I. (1996). Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA, 275(17), 1335–1338.

    Article  CAS  Google Scholar 

  36. Cheng, V. E., & Prior, D. L. (2013). Peripartum cardiomyopathy in a previously asymptomatic carrier of Duchenne muscular dystrophy. Heart, Lung & Circulation, 22, 677–681.

    Article  Google Scholar 

  37. Ahmed, A., Spinty, S., Murday, V., Longman, C., & Khand, A. (2015). A de-novo deletion of dystrophin provoking severe ‘peripartum cardiomyopathy’: the importance of genetic testing in peripartum cardiomyopathy to uncover female carriers. International Journal of Cardiology, 203, 1084–1085.

    Article  Google Scholar 

  38. Soltanzadeh, P., Friez, M. J., Dunn, D., von Niederhausern, A., et al. (2010). Clinical and genetic characterization of manifesting carriers of DMD mutations. Neuromuscular Disorders, 20, 499–504.

    Article  Google Scholar 

  39. Giliberto, F., Radic, C. P., Luce, L., Ferreiro, V., de Brasi, C., & Szijan, I. (2014). Symptomatic female carriers of Duchenne muscular dystrophy (DMD): genetic and clinical characterization. Journal of Neurological Sciences, 336, 36–41.

    Article  CAS  Google Scholar 

  40. Toib, A., Grange, D. K., Kozel, B. A., Ewald, G. A., White, F. B., & Canter, C. E. (2010). Distinct clinical and histopathological presentations of Danon cardiomyopathy in young women. Journal of the American College of Cardiology, 55, 408–410.

    Article  Google Scholar 

  41. Boucek, D., Jirikowic, J., & Taylor, M. (2011). Natural history of Danon disease. Genetics in Medicine, 13(6), 563–568.

    Article  Google Scholar 

  42. Horne, B. D., Rasmusson, K. D., Alharethi, R., et al. (2011). Genome-wide significance and replication of the chromosome 12p11.22 locus near the PTHLH gene for peripartum cardiomyopathy. Circulation. Cardiovascular Genetics, 4, 359–366.

    Article  CAS  Google Scholar 

  43. Maioli, E., Fortino, V., & Pacini, A. (2004). Parathyroid hormone-related protein in preeclamspia: a linkage between maternal and fetal failures. Biology of Reproduction, 71, 1779–1784.

    Article  CAS  Google Scholar 

  44. Sheppard, R., Hsich, E., Damp, K., Elkayam, U., et al. (2016). GNB3 C825T polymorphism and myocardial recovery in peripartum cardiomyopathy: results of multicenter Investigations of Pregnancy-Associated Cardiomyopathy Study. Circulation. Heart Failure, 9, e002683.

    Article  CAS  Google Scholar 

  45. Van Eickels, M., Grohe, C., Cleutjens, J. P. M., Janssen, B. J., Wellens, H. J. J., & Doevendans, P. A. (2001). 17{beta}-estradiol attenuates the development of pressure-overload hypertrophy. Circulation, 104, 1419–1423.

    Article  Google Scholar 

  46. Conrad, K. P. (2011). Maternal vasodilation in pregnancy: the emerging role of relaxin. American Journal of Physiology. Regulatory Integrative and Comparative Physiology, 301, R267–R275.

    Article  CAS  Google Scholar 

  47. Sasser, J. M., Cunningham Jr., M. W., & Baylis, C. (2014). Serelaxin reduces oxidative stress and asymmetric dimethylarginine in angiotensin II-induced hypertension. American Journal of Physiology. Renal Physiology, 307, F1355–F1362.

    Article  CAS  Google Scholar 

  48. Teerlink, J. R., Cotter, G., Davison, B. A., Felker, G. M., Filippatos, G., Greenberg, B. H., Ponikowski, P., Unemori, E., Voors, A. A., Adams Jr., K. F., Dorobantu, M. I., Grinfeld, L. R., Jondeau, G., Marmor, A., Masip, J., Pang, P. S., Werdan, K., Teichman, S. L., Trapani, A., Bush, C. A., Saini, R., Schumacher, C., Severin, T. M., Metra, M., & Investigators REiAHF. (2013). Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet, 381, 29–39.

    Article  CAS  Google Scholar 

  49. Nonhoff, J., Ricke-Hoch, M., Mueller, M., Stapel, B., Pfeffer, T., Kasten, M., Scherr, M., von Kaisenberg, C., Bauersachs, J., Haghikia, A., & Hilfiker-Kleiner, D. (2017). Cardiovascular Research, 113(6), 598–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hilfiker-Kleiner, D., Kaminski, K., Podewski, E., Bonda, T., Schaefer, A., Sliwa, K., et al. (2007). A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell, 128, 589–600.

    Article  CAS  Google Scholar 

  51. Kurdi, M., & Booz, G. W. (2009). JAK redux: a second look at the regulation and role of JAKs in the heart. American Journal of Physiology. Heart and Circulatory Physiology, 297(5), H1545–H1556.

    Article  CAS  Google Scholar 

  52. Hilfiker-Kleiner, D., et al. (2004). Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circulation Research, 95(2), 187–195.

    Article  CAS  Google Scholar 

  53. Negoro, S., et al. (2001). Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation, 104(9), 979–981.

    Article  CAS  Google Scholar 

  54. Sliwa, K., Blauwet, L., Tibazarwa, K., Libhaber, E., Smedema, J.-P., Becker, A., McMurray, J., Yamac, H., Labidi, S., Struman, I., & Hilfiker-Kleiner, D. (2010). Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation, 121(13), 1465–1473.

    Article  CAS  Google Scholar 

  55. Haghikia, A., Podewski, E., Berliner, D., Sonnenschein, K., Fischer, D., Angermann, C. E., Böhm, M., Röntgen, P., Bauersachs, J., Hilfiker-Kleiner, D. (2015). Rationale and design of a randomized, controlled multicentre clinical trial to evaluate the effect of bromocriptine on left ventricular function in women with peripartum cardiomyopathy. Clinical Research in Cardiology, 104(11), 911–917.

    Article  CAS  Google Scholar 

  56. Halkein, J., Tabruyn, S. P., Ricke-Hoch, M., et al. (2013). MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. The Journal of Clinical Investigation, 123, 2143–2154.

    Article  CAS  Google Scholar 

  57. Patten, I. S., Rana, S., Shahul, S., Rowe, G. C., Jang, C., Liu, L., Hacker, M. R., Rhee, J. S., Mitchell, J., Mahmood, F., Hess, P., Farrell, C., et al. (2012). Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. Nature, 485, 333–338.

    Article  CAS  Google Scholar 

  58. St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., Handschin, C., Zheng, K., Lin, J., Yang, W., Simon, D. K., Bachoo, R., & Spiegelman, B. M. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.

    Article  CAS  Google Scholar 

  59. Venkatesha, S., et al. (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nature Medecine, 12, 642–649.

    Article  CAS  Google Scholar 

  60. Wolf, M., et al. (2004). Preeclampsia and future cardiovascular disease: potential role of altered angiogenesis and insulin resistance. The Journal of Clinical Endocrinology and Metabolism, 89, 6239–6243.

    Article  CAS  Google Scholar 

  61. Bello, N., Rendon, I. S. H., & Arany, Z. (2013). The relationship between pre-eclampsia and peripartum cardiomyopathy: a systematic review and meta-analysis. Journal of the American College of Cardiology, 62(18), 1715–1723.

    Article  Google Scholar 

  62. Ntusi, N. B. A., Badri, M., Gumedze, F., Sliwa, K., & Mayosi, B. M. (2015). Pregnancy-associated heart failure: a comparison of clinical presentation and outcome between hypertensive heart failure of pregnancy and idiopathic peripartum cardiomyopathy. PloS One, 10(8), e0133466. doi:10.1371/journal.pone.0133466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Billieux, M.-H., Petignat, P., Fior, A., Mhawech, P., Blouin, J.-L., Dahoun, S., & Vassilakos, P. (2004). Pre-eclampsia and peripartum cardiomyopathy in molar pregnancy: clinical implication for maternally imprinted genes. Ultrasound in Obstetrics & Gynecology, 23, 398–401.

    Article  Google Scholar 

  64. Gleicher, N., & Elkayam, U. (2009). Peripartum cardiomyopathy, an autoimmune manifestation of allograft rejection? Autoimmunity Reviews, 8, 384–387.

    Article  CAS  Google Scholar 

  65. Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, A. J., et al. (2016). 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). European Heart Journal, 37(27), 2129–2200.

    Article  Google Scholar 

  66. Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey Jr., D. E., Drazner, M. H., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Journal of the American College of Cardiology, 62(16), e147–e239.

    Article  Google Scholar 

  67. Hershberger, R. E., Lindenfeld, J., Mestroni, L., Seidman, C. E., Taylor, M. R., & Towbin, J. A. (2009). Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. Journal of Cardiac Failure, 15(2), 83–97.

    Article  Google Scholar 

  68. Wilson, K. D., Shen, P., Fung, E., Karakikes, I., Zhang, A., InanlooRahatloo, K., et al. (2015). A rapid, high-quality, cost-effective, comprehensive and expandable targeted next-generation sequencing assay for inherited heart diseases. Circulation Research, 117(7), 603–611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Judge.

Ethics declarations

Conflict of Interest

Dr. Lee has no potential conflicts of interest. Dr. Judge has received payment as a scientific advisor to Alnylam, Array Biopharma, GlaxoSmithKline, Invitae, MyoKardia, and Pfizer. This review article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.Z.J., Judge, D.P. The Role of Genetics in Peripartum Cardiomyopathy. J. of Cardiovasc. Trans. Res. 10, 437–445 (2017). https://doi.org/10.1007/s12265-017-9764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-017-9764-y

Keywords

Navigation