Skip to main content
Log in

Exploring Earth’s ionosphere and its effect on low radio frequency observation with the uGMRT and the SKA

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The Earth’s ionosphere introduces systematic effects that limit the performance of a radio interferometer at low frequencies (\({\lesssim }1\) GHz). These effects become more pronounced for severe geomagnetic activities or observations involving longer interferometer baselines. The uGMRT, a pathfinder for the Square Kilometre Array (SKA), is located between the northern crest of the Equatorial ionisation Anomaly (EIA) and the magnetic equator. Hence, this telescope is more prone to severe ionospheric conditions and is a unique radio interferometer for studying the ionosphere. Here, we present 235 MHz observations with the GMRT, showing significant ionospheric activities over a solar minimum. This work has characterised the ionospheric disturbances observed with the GMRT. We have compared them with ionospheric studies and observations with other telescopes like the VLA, MWA and LOFAR situated at different magnetic latitudes. We have estimated the ionospheric total electron content (TEC) gradient over the full GMRT array, showing an order of magnitude higher sensitivity than the Global Navigation Satellite System (GNSS). Furthermore, this article uses the ionospheric characteristics estimated from the observations with uGMRT, VLA, LOFAR and MWA to forecast the effects of the low-frequency observations with the SKA1-MID and SKA1-LOW in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The ratio between the peak flux on the image and root mean square noise in a region believed to be source free region.

  2. The readers are referred to Project summary of the SKA1 https://www.skatelescope.org/wp-content/uploads/2021/02/22380_SKA_Project-Summary_v4_single-pages.pdf.

  3. CASA https://casa.nrao.edu/

  4. IRI extended to Plasmasphere http://www.ionolab.org/iriplasonline/.

References

  • Appleton E. V. 1946, Nature, 157, 691

    Article  ADS  Google Scholar 

  • Arora B. S., Morgan J., Ord S. M., et al. 2015, PASA, 32, e029

    Article  ADS  Google Scholar 

  • Ayyagari D., Chakraborty S., Das S., et al. 2020, Advances in Space Research, 65, 1544

    Article  ADS  Google Scholar 

  • Ayyagari D., Datta A., Chakraborty S. 2022, Advances in Space Research, https://doi.org/10.1016/j.asr.2022.07.026

  • Basu S., Basu S. 1985, Journal of Atmospheric and Terrestrial Physics, 47, 753

    Article  ADS  Google Scholar 

  • Basu S., Basu S., Khan B. K. 1976, Radio Science, 11, 821

    Article  ADS  Google Scholar 

  • Basu S., Basu S., McClure J. P., Hanson W. B., Whitney H. E. 1983, Journal of Geophysical Research: Space Physics, 88, 403

    Article  Google Scholar 

  • Basu S., MacKenzie E., Basu S., et al. 1987, IEEE Journal on Selected Areas in Communications, 5, 102

    Article  ADS  Google Scholar 

  • Basu S., Whitney H. E. 1983, Radio Science, 18, 263

    Article  ADS  Google Scholar 

  • Booker H. G., Wells H. W. 1938, Terrestrial Magnetism and Atmospheric Electricity, 43, 249

    Article  ADS  Google Scholar 

  • Bowman G. 1984, Journal of Atmospheric and Terrestrial Physics, 46, 65

    Article  ADS  Google Scholar 

  • Bowman G. G. 1986, Annales Geophysicae (European Geophysical Society), 4, 55

    ADS  Google Scholar 

  • Bowman G. 1988a, Annales Geophysicae, 6, 187

    ADS  Google Scholar 

  • Bowman G. G. 1988b, Journal of Geophysical Research: Space Physics, 93, 5955

    Article  Google Scholar 

  • Bowman G. G. 1990, Journal of geomagnetism and geoelectricity, 42, 109

    Article  ADS  Google Scholar 

  • Braun R., Bonaldi A., Bourke T., Keane E., Wagg J. 2019, arXiv e-prints, arXiv:1912.12699

  • Chakraborty A., Roy N., Datta A., et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 243

    Article  ADS  Google Scholar 

  • Chakraborty S., Ray S., Sur D., Datta A., Paul A. 2020a, Advances in Space Research, 65, 198

    Article  ADS  Google Scholar 

  • Chakraborty S., Datta A., Ray S., Ayyagari D., Paul A. 2020b, Advances in Space Research, 66, 895

  • Chakraborty S., Ray S., Datta A., Paul A. 2020c, Radio Science, 55, e2020RS007061

    Article  ADS  Google Scholar 

  • Chandra H., Sharma S., Abdu M., Batista I. 2003, Advances in Space Research, 31, 717

    Article  ADS  Google Scholar 

  • Cohen A. S., Röttgering H. J. A. 2009, The Astronomical Journal, 138, 439

    Article  ADS  Google Scholar 

  • Cornwell T., Fomalont E. B. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 180, Synthesis Imaging in Radio Astronomy II, eds Taylor G. B., Carilli C. L., Perley R. A., p. 187

  • Das Gupta A., Paul A., Ray S., Das A., Ananthakrishnan S. 2008, Radio Science, 43, RS5002

  • Datta A., Bhatnagar S., Carilli C. L. 2009, The Astrophysical Journal, 703, 1851

    Article  ADS  Google Scholar 

  • Datta A., Chakrabarty S. 2017, XXXIInd General Assembly and Scientific Symposium of the International union of Radio Science (URSI GASS), p. 1

  • Datta-Barua S., Walter T., Blanch J., Enge P. 2008, Radio Science, 43, RS5010

  • Davies K. 1990, Ionospheric radio, 31 (IET)

  • de Gasperin F., Mevius M., Rafferty D. A., Intema H. T., Fallows R. A. 2018, Astronomy & Astrophysics, 615, A179

    Google Scholar 

  • Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L. W. 2009, IEEE Proceedings, 97, 1482

    Article  ADS  Google Scholar 

  • Doherty P. H., Delay S. H., Valladares C. E., Klobuchar J. A. 2003, NAVIGATION, 50, 235

    Article  Google Scholar 

  • Fallows R. A., Forte B., Astin I., et al. 2020, Journal of Space Weather and Space Climate, 10, 10

    Article  ADS  Google Scholar 

  • Fejer B. G., Kelley M. C. 1980, Reviews of Geophysics, 18, 401

    Article  ADS  Google Scholar 

  • Franke S. J., Liu C. H. 1985, Radio Science, 20, 403

    Article  ADS  Google Scholar 

  • Franke S. J., Liu C. H., McClure J. P. 1984, Journal of Geophysical Research: Space Physics, 89, 10891

    Article  Google Scholar 

  • Fukao S., Kelley M. C., Shirakawa T., et al. 1991, Journal of Geophysical Research: Space Physics, 96, 3725

    Article  Google Scholar 

  • Gupta Y., Ajithkumar B., Kale H. S., et al. 2017, Current Science, 113, 707

    Article  ADS  Google Scholar 

  • Hanson W. B., Sanatani S. 1973, Journal of Geophysical Research (1896–1977), 78, 1167

  • Helmboldt J. F., Hurley-Walker N. 2020, Radio Science, 55, e07106

    Article  Google Scholar 

  • Helmboldt J. F., Lane W. M., Cotton W. D. 2012a, Radio Science, 47, RS5008

  • Helmboldt J. F., Lazio T. J. W., Intema H. T., Dymond K. F. 2012b, Radio Science, 47, RS0L02

  • Helmboldt J. F., Lazio T. J. W., Intema H. T., Dymond K. F. 2012c, Radio Science, 47, RS0K02

  • Hernández-Pajares M., Juan J. M., Sanz J. 2006, Journal of Geophysical Research: Space Physics, 111, https://doi.org/10.1029/2005JA011474

  • Hoque M. M., Jakowski N. 2008, Radio Science, 43, RS5008

  • Huang C.-S., de La Beaujardiere O., Roddy P. A., et al. 2011, Journal of Geophysical Research: Space Physics, 116, doi:https://doi.org/10.1029/2010JA015982

  • Hunter J. D. 2007, Computing in Science and Engineering, 9, 90

    Article  ADS  Google Scholar 

  • Hysell D. L., Burcham J. D. 1999, Journal of Geophysical Research: Space Physics, 104, 4361

    Article  Google Scholar 

  • Intema H. T., Jagannathan P., Mooley K. P., Frail D. A. 2017a, Astronomy & Astrophysics, 598, A78

    Article  ADS  Google Scholar 

  • Intema H. T., Jagannathan P., Mooley K. P., Frail D. A. 2017b, Astronomy & Astrophysics, 598, A78

    Article  ADS  Google Scholar 

  • Jordan C. H., Murray S., Trott C. M., et al. 2017, Monthly Notices of the Royal Astronomical Society, 471, 3974

    Article  ADS  Google Scholar 

  • Kassim N., White S., Rodriquez P., et al. 2010, in Advanced Maui Optical and Space Surveillance Technologies Conference, ed. Ryan S., E59

  • Kelley M. 1989, Geophys. Ser, 43, 437

    Google Scholar 

  • Kelley M. C., Haerendel G., Kappler H., et al. 1976, Geophysical Research Letters, 3, 448

    Article  ADS  Google Scholar 

  • Kintner P. M., Ledvina B. M., de Paula E. R. 2007, Space Weather, 5, S09003

    Article  ADS  Google Scholar 

  • Li Q., Rapp M., Röttger J., et al. 2010, Journal of Geophysical Research: Atmospheres, 115, https://doi.org/10.1029/2009JD012271

  • Loi S. T., Trott C. M., Murphy T., et al. 2015, Radio Science, 50, 574

    Article  ADS  Google Scholar 

  • Lonsdale C. J. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 345, From Clark Lake to the Long Wavelength Array: Bill Erickson’s Radio Science, eds Kassim N., Perez M., Junor W., Henning P., p. 399

  • Mangla S., Datta A. 2022, Monthly Notices of the Royal Astronomical Society, 513, 964

    Article  ADS  Google Scholar 

  • Mannucci A. J., Wilson B. D., Yuan D. N., et al. 1998, Radio Science, 33, 565

    Article  ADS  Google Scholar 

  • Mathews J. D., González S., Sulzer M. P., et al. 2001, Geophysical Research Letters, 28, 4167

    Article  ADS  Google Scholar 

  • Mazumder A., Chakraborty A., Datta A., et al. 2020, Monthly Notices of the Royal Astronomical Society, 495, 4071

    Article  ADS  Google Scholar 

  • McClure J. P., Hanson W. B., Hoffman J. H. 1977, Journal of Geophysical Research (1896–1977), 82, 2650

  • Mevius M., van der Tol S., Pandey V. N., et al. 2016, Radio Science, 51, 927

    Article  ADS  Google Scholar 

  • Murthy B. V. K., Ravindran S., Viswanathan K. S., et al. 1998, Journal of Geophysical Research: Space Physics, 103, 20761

    Article  Google Scholar 

  • Patra A. K., Yokoyama T., Yamamoto M., et al. 2007, Journal of Geophysical Research: Space Physics, 112, https://doi.org/10.1029/2006JA011825

  • Paul A., Chaitanya P. P., Patra A. K., Nandakumar P., Das T. 2021, Radio Science, 56, e2021RS007289, e2021RS007289 2021RS007289

  • Perley R. A. 1999, in Astronomical Society of the Pacific Conference Series, Vol. 180, Synthesis Imaging in Radio Astronomy II, eds Taylor G. B., Carilli C. L., Perley R. A., p. 275

  • Petit G., Luzum B. 2010, IERS Technical Note, 36, 1

    ADS  Google Scholar 

  • Priyadarshi S. 2015, Surveys in Geophysics, 36, 295

    Article  ADS  Google Scholar 

  • Rastogi R. G. 1977, Journal of geomagnetism and geoelectricity, 29, 557

    Article  ADS  Google Scholar 

  • Swartz W. E., Collins S. C., Kelley M. C., et al. 2002, Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1545

    Article  ADS  Google Scholar 

  • Swarup G., Ananthakrishnan S., Kapahi V. K., et al. 1991, Current Science, 60, 95

    ADS  Google Scholar 

  • Tsunoda R. T., Buonocore J. J., Saito A., et al. 1999, Geophysical Research Letters, 26, 995

    Article  ADS  Google Scholar 

  • van Weeren R. J., Williams W. L., Hardcastle M. J., et al. 2016, The Astrophysical Journal Supplement, 223, 2

    Article  ADS  Google Scholar 

  • Wayth R. B., Lenc E., Bell M. E., et al. 2015, Publications of the Astronomical Society of Australia, 32, e025

    Article  ADS  Google Scholar 

  • Woodman R. F., Chau J. L., Aquino F., Rodriguez R. R., Flores L. A. 1999, Radio Science, 34, 983

    Article  ADS  Google Scholar 

  • Woodman R. F., La Hoz C. 1976, Journal of Geophysical Research (1896–1977), 81, 5447

  • Xiao Z., Xiao S.-G., Hao Y.-Q., Zhang D.-H. 2007, Journal of Geophysical Research: Space Physics, 112, https://doi.org/10.1029/2006JA011671

  • Yamamoto M., Fukao S., Woodman R. F., et al. 1991, Journal of Geophysical Research: Space Physics, 96, 15943

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. SM would like to thank the financial assistance from the University Grants Commission. SM further acknowledges Aishrila Mazumder for helpful discussions. The work of SC is supported by the Department of Space, Government of India. AD would like to acknowledge the support from CSIR through EMR-II No. 03(1461)/19.

This study also made use of MATPLOTLIB (Hunter 2007) open-source plotting packages for PYTHON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Mangla.

Additional information

This article is part of the Special Issue on “Indian Participation in the SKA”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangla, S., Chakraborty, S., Datta, A. et al. Exploring Earth’s ionosphere and its effect on low radio frequency observation with the uGMRT and the SKA. J Astrophys Astron 44, 2 (2023). https://doi.org/10.1007/s12036-022-09900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09900-0

Keywords

Navigation