Skip to main content
Log in

Detection of radio-AGN in dust-obscured galaxies using deep uGMRT radio continuum observations

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Radio observations being insensitive to the dust-obscuration, have been exploited to unveil the population of active galactic nuclei residing in galaxies with large dust content. In this paper, we investigate the radio characteristics of 321 dust-obscured galaxies (DOGs; \(S_{24~{\upmu }\mathrm{m}}/S_{{ r}-\mathrm{band}}\,\ge \, 1000\)) by using mainly deep band-3 (250–550 MHz) observations from the upgraded giant metrewave radio telescope (uGMRT) and 1.5 GHz Jansky very large array (JVLA) observations. We find that for our sample of DOGs, deep (median noise-rms \(=\) 30 \(\upmu \)Jy beam\(^{-1}\)) 400 MHz band-3 uGMRT observations yield the highest detection rate (28%) among those obtained with the JVLA, and low frequency array (LOFAR) radio observations and XMM-N X-ray observations. The radio characteristics of our sample sources, i.e., linear extent (<40 kpc at \(z<1.2\)), bimodal spectral index (\({\alpha }_\mathrm{400~MHz}^\mathrm{1.5~GHz}\)) distribution and the radio luminosities (\(L_\mathrm{1.5~GHz}>5.0 \times 10^{23}\) W Hz\(^{-1}\)), suggest them to be mainly consist of compact-steep-spectrum (CSS) or peaked-spectrum (PS) sources representing an early phase of the AGN-jet activity in dust-obscured environments. With stacking, we find the existence of faint radio emission (\(S_\mathrm{400~MHz} = 72.9~\upmu \)Jy beam\(^{-1}\) and \(S_\mathrm{1.5~GHz}= 29~\upmu \)Jy beam\(^{-1}\) with signal-to-noise ratio \(\sim \)20) in otherwise radio-undetected DOGs. Our study reveals the faint emission at a few tens of \(\upmu \)Jy level in high-z DOGs, which can be used as a test-bed for the deeper radio continuum surveys planned with the square-kilometer array (SKA) and its pathfinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://hsc.mtk.nao.ac.jp/ssp/survey/.

  2. https://casa.nrao.edu/.

  3. https://hsc.mtk.nao.ac.jp/ssp/data-release/.

  4. http://www.aips.nrao.edu/index.shtml.

  5. https://www.skatelescope.org/wp-content/uploads/2018/08/16231-factsheet-telescopes-v71.pdf.

  6. https://www.evlbi.org/.

  7. https://www.e-merlin.ac.uk/index.html.

  8. https://science.nrao.edu/facilities/vlba.

References

  • Aihara H., AlSayyad Y., Ando M., et al. 2022, Publications of the Astronomical Society of Japan, arXiv:2108.13045

  • An T., Baan W. A. 2012, The Astrophysical Journal, 760, 77

    Article  ADS  Google Scholar 

  • Becker R. H., White R. L., Helfand D. J. 1995, The Astrophysical Journal, 450, 559

    Article  ADS  Google Scholar 

  • Chen C. T. J., Brandt W. N., Luo B., et al. 2018, Monthly Notices of the Royal Astronomical Society, 478, 2132

    Article  ADS  Google Scholar 

  • Condon J. J., Cotton W. D., Broderick J. J. 2002, The Astronomical Journal, 124, 675

    Article  ADS  Google Scholar 

  • Condon J. J., Cotton W. D., Greisen E. W., et al. 1998, The Astronomical Journal, 115, 1693

    Article  ADS  Google Scholar 

  • Cool R. J., Moustakas J., Blanton M. R., et al. 2013, The Astrophysical Journal, 767, 118

    Article  ADS  Google Scholar 

  • Dey A., Soifer B. T., Desai V., et al. 2008, The Astrophysical Journal, 677, 943

    Article  ADS  Google Scholar 

  • Donley J. L., Koekemoer A. M., Brusa M., et al. 2012, The Astrophysical Journal, 748, 142

    Article  ADS  Google Scholar 

  • Fan L., Chen W., An T., et al. 2020, The Astrophysical Journal, 905, L32

    Article  ADS  Google Scholar 

  • Farrah D., Lonsdale C. J., Weedman D. W., et al. 2008, The Astrophysical Journal, 677, 957

    Article  ADS  Google Scholar 

  • Farrah D., Petty S., Connolly B., et al. 2017, The Astrophysical Journal, 844, 106

    Article  ADS  Google Scholar 

  • Fiore F., Grazian A., Santini P., et al. 2008, The Astrophysical Journal, 672, 94

    Article  ADS  Google Scholar 

  • Fiore F., Puccetti S., Brusa M., et al. 2009, The Astrophysical Journal, 693, 447

    Article  ADS  Google Scholar 

  • Frey S., Paragi Z., Gabányi K. É., An T. 2016, Monthly Notices of the Royal Astronomical Society, 455, 2058

    Article  ADS  Google Scholar 

  • Gabányi K. É., Frey S., Perger K. 2021, Monthly Notices of the Royal Astronomical Society, 506, 3641

    Article  ADS  Google Scholar 

  • Garilli B., Guzzo L., Scodeggio M., et al. 2014, Astronomy & Astrophysics, 562, A23

    Article  Google Scholar 

  • Hale C. L., Williams W., Jarvis M. J., et al. 2019, Astronomy & Astrophysics, 622, A4

    Article  Google Scholar 

  • Helfand D. J., White R. L., Becker R. H. 2015, The Astrophysical Journal, 801, 26

    Article  ADS  Google Scholar 

  • Heywood I., Hale C. L., Jarvis M. J., et al. 2020, Monthly Notices of the Royal Astronomical Society, 496, 3469

    Article  ADS  Google Scholar 

  • Heywood I., Jarvis M. J., Hale C. L., et al. 2022, Monthly Notices of the Royal Astronomical Society, 509, 2150

    Article  ADS  Google Scholar 

  • Hopkins P. F., Hernquist L., Cox T. J., et al. 2006, The Astrophysical Journals, 163, 1

    ADS  Google Scholar 

  • Hopkins P. F., Hernquist L., Cox T. J., Kereš D. 2008, The Astrophysical Journals, 175, 356

    ADS  Google Scholar 

  • Ishwara-Chandra C. H., Taylor A. R., Green D. A., et al. 2020, Monthly Notices of the Royal Astronomical Society, 497, 5383

    Article  ADS  Google Scholar 

  • Kauffmann G., Haehnelt M. 2000, Monthly Notices of the Royal Astronomical Society, 311, 576

    Article  ADS  Google Scholar 

  • Lacy M., Storrie-Lombardi L. J., Sajina A., et al. 2004, The Astrophysical Journals, 154, 166

    ADS  Google Scholar 

  • Lacy M., Sajina A. 2020, Nature Astronomy, 4, 352

    Article  ADS  Google Scholar 

  • Lacy M., Baum S.A., Chandler C. J., et al. 2020, Publications of the Astronomical Society of the Pacific, 132, 035001

    Article  ADS  Google Scholar 

  • Lansbury G. B., Banerji M., Fabian A. C., Temple M. J. 2020, Monthly Notices of the Royal Astronomical Society, 495, 2652

    Article  ADS  Google Scholar 

  • Le Fèvre O., Cassata P., Cucciati O., et al. 2013, Astronomy & Astrophysics, 559, A14

    Article  Google Scholar 

  • Lonsdale C. J., Smith H. E., Rowan-Robinson M., et al. 2003, Publications of the Astronomical Society of the Pacific, 115, 897

    Article  ADS  Google Scholar 

  • Lonsdale C. J., Lacy M., Kimball A. E., et al. 2015, The Astrophysical Journal, 813, 45

    Article  ADS  Google Scholar 

  • Melbourne J., Soifer B. T., Desai V., et al. 2012, The Astronomical Journal, 143, 125

    Article  ADS  Google Scholar 

  • Mohan N., Rafferty D. 2015, PyBDSF: Python Blob Detection and Source Finder ascl:1502.007

  • Noboriguchi A., Nagao T., Toba Y., et al. 2019, The Astrophysical Journal, 876, 132

    Article  ADS  Google Scholar 

  • Norris R. P., Marvil J., Collier J. D., et al. 2021, Publications of the Astronomical Society of Australia, 38, e046

    Article  ADS  Google Scholar 

  • O’Dea C. P., Saikia D. J. 2021, Astronomy & Astrophysics Reviews, 29, 3

    Article  ADS  Google Scholar 

  • Patil P., Nyland K., Whittle M., et al. 2020, The Astrophysical Journal, 896, 18

  • Ricci C., Ueda Y., Koss M. J., et al. 2015, The Astrophysical Journall, 815, L13

    Article  ADS  Google Scholar 

  • Ricci C., Privon G. C., Pfeifle R. W., et al. 2021, Monthly Notices of the Royal Astronomical Society, 506, 5935

    Article  ADS  Google Scholar 

  • Riguccini L. A., Treister E., Menéndez-Delmestre K., et al. 2019, AJ, 157, 233

  • Rowan-Robinson M. 2000, Monthly Notices of the Royal Astronomical Society, 316, 885

    Article  ADS  Google Scholar 

  • Schuldt S., Suyu S. H., Cañameras R., et al. 2021, Astronomy & Astrophysics, 651, A55

    Article  Google Scholar 

  • Shanks T., Ansarinejad B., Bielby R. M., et al. 2021, Monthly Notices of the Royal Astronomical Society, 505, 1509

    Article  ADS  Google Scholar 

  • Singh V., Ishwara-Chandra C. H., Wadadekar Y., Beelen A., Kharb P. 2015, Monthly Notices of the Royal Astronomical Society, 446, 599

    Article  ADS  Google Scholar 

  • Singh V., Chand H., Ishwara-Chandra C. H., Kharb P. 2018, in Revisiting Narrow-Line Seyfert 1 Galaxies and their Place in the Universe, 29

  • Stern D., Eisenhardt P., Gorjian V., et al. 2005, The Astrophysical Journal, 631, 163

    Article  ADS  Google Scholar 

  • Tanaka M., Coupon J., Hsieh B.-C., et al. 2018, Publications of the Astronomical Society of Japan, 70, S9

    Article  ADS  Google Scholar 

  • Toba Y., Nagao T., Strauss M. A., et al. 2015, Publications of the Astronomical Society of Japan, 67, 86

    Article  ADS  Google Scholar 

  • Truebenbach A. E., Darling J. 2017, Monthly Notices of the Royal Astronomical Society, 468, 196

    Article  ADS  Google Scholar 

  • Tsai C.-W., Eisenhardt P. R. M., Wu J., et al. 2015, The Astrophysical Journal, 805, 90

    Article  ADS  Google Scholar 

  • White R. L., Helfand D. J., Becker R. H., Glikman E., de Vries W. 2007, The Astrophysical Journal, 654, 99

    Article  ADS  Google Scholar 

  • Willott C. J., Rawlings S., Jarvis M. J., Blundell K. M. 2003, Monthly Notices of the Royal Astronomical Society, 339, 173

    Article  ADS  Google Scholar 

  • Yutani N., Toba Y., Baba S., Wada K. 2022, arXiv e-prints, arXiv:2205.00567

Download references

Acknowledgements

We thank the anonymous reviewer for useful suggestions that helped us to improve the manuscript. AK, VS and SD acknowledge the support from the Physical Research Laboratory, Ahmedabad, funded by the Department of Space, Government of India. CHI and YW acknowledge the support of the Department of Atomic Energy, Government of India, under project no. 12-R &D-TFR5.02-0700. We thank the staff of GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA. This paper makes use of software developed for Vera C. Rubin Observatory. We thank the Rubin Observatory for making their code available as free software at http://pipelines.lsst.io/. This paper is based on data collected from the Subaru Telescope and retrieved from the HSC data archive system, which is operated by the Subaru Telescope and Astronomy Data Center (ADC) at NAOJ. Data analysis was in part carried out with the cooperation of Center for Computational Astrophysics (CfCA), NAOJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Kayal.

Additional information

This article is part of the Special Issue on “Indian Participation in the SKA”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayal, A., Singh, V., Chandra, C.H.I. et al. Detection of radio-AGN in dust-obscured galaxies using deep uGMRT radio continuum observations. J Astrophys Astron 43, 84 (2022). https://doi.org/10.1007/s12036-022-09873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09873-0

Keywords

Navigation