Skip to main content

Advertisement

Log in

Linking Heat Shock Protein 70 and Parkin in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease that affects millions of elderly people worldwide and is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The precise mechanisms underlying the pathogenesis of PD are still not fully understood, but it is well accepted that the misfolding, aggregation, and abnormal degradation of proteins are the key causative factors of PD. Heat shock protein 70 (Hsp70) is a molecular chaperone that participates in the degradation of misfolded and aggregated proteins in living cells and organisms. Parkin, an E3 ubiquitin ligase, participates in the degradation of proteins via the proteasome pathway. Recent studies have indicated that both Hsp70 and Parkin play pivotal roles in PD pathogenesis. In this review, we focus on discussing how dysregulation of Hsp70 and Parkin leads to PD pathogenesis, the interaction between Hsp70 and Parkin in the context of PD and their therapeutic applications in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson's disease. Lancet Neurol 20(5):385–397. https://doi.org/10.1016/S1474-4422(21)00030-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12(4):255–259. https://doi.org/10.12965/jer.1632642.321

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chaari A, Hoarau-Véchot J, Ladjimi M (2013) Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson’s disease. Int J Biol Macromol 60:196–205. https://doi.org/10.1016/j.ijbiomac.2013.05.032

    Article  PubMed  CAS  Google Scholar 

  4. Alam P, Bousset L, Melki R, Otzen DE (2019) α-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem 150(5):522–534. https://doi.org/10.1111/jnc.14808

    Article  PubMed  CAS  Google Scholar 

  5. Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B et al (2014) Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis 70:214–223. https://doi.org/10.1016/j.nbd.2014.06.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lance 397(10291):2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

    Article  CAS  Google Scholar 

  7. Jones DR, Moussaud S, McLean P (2014) Targeting heat shock proteins to modulate α-synuclein toxicity. Ther Adv Neurol Disord 7(1):33–51. https://doi.org/10.1177/1756285613493469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ (2021) Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci 46(4):329–343. https://doi.org/10.1016/j.tibs.2020.11.007

    Article  PubMed  CAS  Google Scholar 

  9. PLOS ONE Editors (2020) Retraction: DJ-1 modulates α-Synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson’s disease and involvement of HSP70. PLoS One 15(1):e0219023. https://doi.org/10.1371/journal.pone.0219023

    Article  CAS  Google Scholar 

  10. Zanon A, Pramstaller PP, Hicks AA, Pichler I (2018) Environmental and genetic variables influencing mitochondrial health and Parkinson’s disease penetrance. Parkinsons Dis 7(2018):8684906. https://doi.org/10.1155/2018/8684906

    Article  CAS  Google Scholar 

  11. Thomas B (2009) Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11(9):2077–2082. https://doi.org/10.1089/ars.2009.2697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Weng M, Xie X, Liu C, Lim KL, Zhang CW, Li L (2018) The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2(2018):9163040. https://doi.org/10.1155/2018/9163040

    Article  CAS  Google Scholar 

  13. Angelova PR, Esteras N, Abramov AY (2021) Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: finding ways for prevention. Med Res Rev 41(2):770–784. https://doi.org/10.1002/med.21712

    Article  PubMed  CAS  Google Scholar 

  14. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target The 6(1):49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  Google Scholar 

  15. Borsche M, Pereira SL, Klein C, Grünewald A (2021) Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. J Parkinsons Dis 11(1):45–60. https://doi.org/10.3233/JPD-201981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. https://doi.org/10.1002/ana.10795

    Article  PubMed  CAS  Google Scholar 

  17. Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N, Pieri L, Madiona K et al (2013) G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol 73(4):459–471. https://doi.org/10.1002/ana.23894

    Article  PubMed  CAS  Google Scholar 

  18. Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH (2013) A novel α-synuclein missense mutation in Parkinson disease. Neurology 80(11):1062–1064. https://doi.org/10.1212/WNL.0b013e31828727ba

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE et al (2021) Amyloid oligomers: a joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 121(4):2545–2647. https://doi.org/10.1021/acs.chemrev.0c01122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Meade RM, Fairlie DP, Mason JM (2019) Alpha-synuclein structure and Parkinson’s disease - lessons and emerging principles. Mol Neurodegener 14(1):29. https://doi.org/10.1186/s13024-019-0329-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Paul S, Mahanta S (2014) Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door? Mol Cell Biochem 386(1-2):45–61. https://doi.org/10.1007/s11010-013-1844-y

    Article  PubMed  CAS  Google Scholar 

  22. Hu S, Tan J, Qin L, Lv L, Yan W, Zhang H, Tang B, Wang C (2021) Molecular chaperones and Parkinson’s disease. Neurobiol Dis 160:105527. https://doi.org/10.1016/j.nbd.2021.105527

    Article  PubMed  CAS  Google Scholar 

  23. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111. https://doi.org/10.1007/s12192-008-0068-7

    Article  PubMed  CAS  Google Scholar 

  24. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6):365–381. https://doi.org/10.1038/s41580-018-0001-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 16(11):254. https://doi.org/10.3389/fnins.2017.00254

    Article  Google Scholar 

  26. Yu WW, Cao SN, Zang CX, Wang L, Yang HY, Bao XQ, Zhang D (2018) Heat shock protein 70 suppresses neuroinflammation induced by α-synuclein in astrocytes. Mol Cell Neurosci 86:58–64. https://doi.org/10.1016/j.mcn.2017.11.013

    Article  PubMed  CAS  Google Scholar 

  27. Cox D, Whiten DR, Brown JWP, Horrocks MH, San Gil R, Dobson CM, Klenerman D, van Oijen AM (2018) The small heat shock protein Hsp27 binds α-synuclein fibrils, preventing elongation and cytotoxicity. J Biol Chem 293(12):4486–4497. https://doi.org/10.1074/jbc.M117.813865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189(2):211–221. https://doi.org/10.1083/jcb.200910140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298. https://doi.org/10.1371/journal.pbio.1000298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383. https://doi.org/10.1073/pnas.0911187107

    Article  PubMed  Google Scholar 

  31. Verma M, Lizama BN, Chu CT (2022) Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegene 11(1):3. https://doi.org/10.1186/s40035-021-00278-7

    Article  CAS  Google Scholar 

  32. Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R (2020) Co-chaperones in targeting and delivery of misfolded proteins to the 26S proteasome. Biomolecules 10(8):1141. https://doi.org/10.3390/biom10081141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gorantla NV, Chinnathambi S (2018) Tau protein squired by molecular chaperones during Alzheimer’s disease. J Mol Neurosci 66(3):356–368. https://doi.org/10.1007/s12031-018-1174-3

    Article  PubMed  CAS  Google Scholar 

  34. Hansson O (2021) Biomarkers for neurodegenerative diseases. Nat Me 27(6):954–963. https://doi.org/10.1038/s41591-021-01382-x

    Article  CAS  Google Scholar 

  35. Bartels T, De Schepper S, Hong S (2020) Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 370(6512):66–69. https://doi.org/10.1126/science.abb8587

    Article  PubMed  CAS  Google Scholar 

  36. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106(21):8471–8476. https://doi.org/10.1073/pnas.0903503106

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20(11):665–680. https://doi.org/10.1038/s41580-019-0133-3

    Article  PubMed  CAS  Google Scholar 

  38. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451. https://doi.org/10.1016/j.cell.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  39. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332. https://doi.org/10.1038/nature10317

    Article  PubMed  CAS  Google Scholar 

  40. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858. https://doi.org/10.1126/science.1068408

    Article  PubMed  CAS  Google Scholar 

  41. Nie T, Tao K, Zhu L, Huang L, Hu S, Yang R, Xu P, Mao Z, Yang Q (2021) Chaperone-mediated autophagy controls the turnover of E3 ubiquitin ligase MARCHF5 and regulates mitochondrial dynamics. Autophagy 17(10):2923–2938. https://doi.org/10.1080/15548627.2020.1848128

    Article  PubMed  CAS  Google Scholar 

  42. Issa AR, Sun J, Petitgas C, Mesquita A, Dulac A, Robin M, Mollereau B, Jenny A et al (2018) The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy 14(11):1898–1910. https://doi.org/10.1080/15548627.2018.1491489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235. https://doi.org/10.1016/S0070-2153(05)73007-6

    Article  PubMed  CAS  Google Scholar 

  44. Kaushik S, Cuervo AM (2012) Chaperones in autophagy. Pharmacol Res 66(6):484–493. https://doi.org/10.1016/j.phrs.2012.10.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 6(11):185. https://doi.org/10.3389/fnins.2017.00185

    Article  Google Scholar 

  46. Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114(Pt 13):2491–2499. https://doi.org/10.1242/jcs.114.13.2491

    Article  PubMed  CAS  Google Scholar 

  47. Shimura H, Hattori N, Si K, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K et al (2000) Familial Parkinson disease gene product, Parkin, is a ubiquitin-protein ligase. Nat Gene 25(3):302–305. https://doi.org/10.1038/77060

    Article  CAS  Google Scholar 

  48. Wahabi K, Perwez A, Rizvi MA (2018) Parkin in Parkinson’s disease and cancer: a double-edged sword. Mol Neurobiol 55(8):6788–6800. https://doi.org/10.1007/s12035-018-0879-1

    Article  PubMed  CAS  Google Scholar 

  49. Kumar P, Pradhan K, Karunya R, Ambasta RK, Querfurth HW (2012) Cross-functional E3 ligases Parkin and C-terminus Hsp70-interacting protein in neurodegenerative disorders. J Neurochem 120(3):350–370. https://doi.org/10.1111/j.1471-4159.2011.07588.x

    Article  PubMed  CAS  Google Scholar 

  50. Wang XL, Feng ST, Wang ZZ, Yuan YH, Chen NH, Zhang Y (2021) Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control in Parkinson’s disease. Cell Mol Neurobiol 41(7):1395–1411. https://doi.org/10.1007/s10571-020-00914-2

    Article  PubMed  CAS  Google Scholar 

  51. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2:1002. https://doi.org/10.1038/srep01002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H et al (2014) Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature 510(7503):162–166. https://doi.org/10.1038/nature13392

    Article  PubMed  CAS  Google Scholar 

  53. Levin J, Hillmer AS, Högen T, McLean PJ, Giese A (2016) Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy. Biochem Biophys Res Commun 477(1):76–82. https://doi.org/10.1016/j.bbrc.2016.06.023

    Article  PubMed  CAS  Google Scholar 

  54. Cao YL, Yang YP, Mao CJ, Zhang XQ, Wang CT, Yang J, Lv DJ, Wang F et al (2017) A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy. Neurobiol Aging 60:104–115. https://doi.org/10.1016/j.neurobiolaging

    Article  PubMed  CAS  Google Scholar 

  55. Chiang AN, Liang M, Dominguez-Meijide A, Masaracchia C, Goeckeler-Fried JL, Mazzone CS, Newhouse DW, Kendsersky NM et al (2019) Synthesis and evaluation of esterified Hsp70 agonists in cellular models of protein aggregation and folding. Bioorg Med Chem 27(1):79–91. https://doi.org/10.1016/j.bmc.2018.11.011

    Article  PubMed  CAS  Google Scholar 

  56. Taguchi YV, Gorenberg EL, Nagy M, Thrasher D, Fenton WA, Volpicelli-Daley L, Horwich AL, Chandra SS (2019) Hsp110 mitigates α-synuclein pathology in vivo. Proc Natl Acad Sci U S A 116(48):24310–24316. https://doi.org/10.1073/pnas.1903268116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wentink AS, Nillegoda NB, Feufel J, Ubartaitė G, Schneider CP, De Los RP, Hennig J, Barducci A et al (2020) Molecular dissection of amyloid disaggregation by human HSP70. Nature 587(7834):483–488. https://doi.org/10.1038/s41586-020-2904-6

    Article  PubMed  CAS  Google Scholar 

  58. Tao J, Berthet A, Citron YR, Tsiolaki PL, Stanley R, Gestwicki JE, Agard DA, McConlogue L (2021) Hsp70 chaperone blocks α-synuclein oligomer formation via a novel engagement mechanism. J Biol Chem 296:100613. https://doi.org/10.1016/j.jbc.2021.100613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ekimova IV, Plaksina DV, Pastukhov YF, Lapshina KV, Lazarev VF, Mikhaylova ER, Polonik SG, Pani B et al (2018) New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson’s disease. Exp Neurol 306:199–208. https://doi.org/10.1016/j.expneurol.2018.04.012

    Article  PubMed  CAS  Google Scholar 

  60. Hu Z, Mao C, Wang H, Zhang Z, Zhang S, Luo H, Tang M, Yang J et al (2021) CHIP protects against MPP+/MPTP-induced damage by regulating Drp1 in two models of Parkinson’s disease. Aging (Albany NY) 13(1):1458–1472. https://doi.org/10.18632/aging.202389

    Article  PubMed  CAS  Google Scholar 

  61. Alberti G et al (2021) Functions and therapeutic potential of extracellular Hsp60, Hsp70, and Hsp90 in neuroinflammatory disorders. Applied Sciences-Basel 11(2):736

    Article  CAS  Google Scholar 

  62. Yurinskaya MM, Garbuz DG, Evgen'ev MB (2020) Vinokurov MG. Exogenous HSP70 and signaling pathways involved in the inhibition of LPS-induced neurotoxicity of neuroblastoma cells. Mol Biol (Mosk) 54(1):128–136. https://doi.org/10.31857/S0026898420010164

    Article  PubMed  CAS  Google Scholar 

  63. Li H, Yang J, Wang Y, Liu Q, Cheng J, Wang F (2019) Neuroprotective effects of increasing levels of HSP70 against neuroinflammation in Parkinson’s disease model by inhibition of NF-κB and STAT3. Life Sci 1(234):116747. https://doi.org/10.1016/j.lfs.2019.116747

    Article  CAS  Google Scholar 

  64. Tiefensee Ribeiro C, Peixoto DO, Santos L, Saibro-Girardi C, Brum PO, Carazza-Kessler FG, Somensi N, Behrens LMP et al (2021) Intranasal HSP70 administration protects against dopaminergic denervation and modulates neuroinflammatory response in the 6-OHDA rat model. Brain Behav Immun Health 31(14):100253. https://doi.org/10.1016/j.bbih.2021.100253

    Article  CAS  Google Scholar 

  65. Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16(7):1501–1507. https://doi.org/10.1093/emboj/16.7.1501

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366. https://doi.org/10.1016/s0092-8674(00)80928-9

    Article  PubMed  CAS  Google Scholar 

  67. Friesen EL, De Snoo ML, Rajendran L, Kalia LV, Kalia SK (2017) Chaperone-based therapies for disease modification in Parkinson’s disease. Parkinsons Dis 2017:5015307. https://doi.org/10.1155/2017/5015307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kelley WL (1999) Molecular chaperones: how J domains turn on Hsp70s. Curr Biol 9(8):R305–R308. https://doi.org/10.1016/s0960-9822(99)80185-7

    Article  PubMed  CAS  Google Scholar 

  69. Höhfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16(20):6209–6216. https://doi.org/10.1093/emboj/16.20.6209

    Article  PubMed  PubMed Central  Google Scholar 

  70. Arakawa A, Handa N, Ohsawa N, Shida M, Kigawa T, Hayashi F, Shirouzu M, Yokoyama S (2010) The C-terminal BAG domain of BAG5 induces conformational changes of the Hsp70 nucleotide-binding domain for ADP-ATP exchange. Structure 18(3):309–319. https://doi.org/10.1016/j.str.2010.01.004

    Article  PubMed  CAS  Google Scholar 

  71. Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31(21):4221–4235. https://doi.org/10.1038/emboj.2012.264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2(12):1133–1138. https://doi.org/10.1093/embo-reports/kve246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. https://doi.org/10.1038/33416

    Article  PubMed  CAS  Google Scholar 

  74. Jęśko H, Lenkiewicz AM, Adamczyk A (2017) Treatments and compositions targeting α-synuclein: a patent review (2010-2016). Expert Opin Ther Pa 27(4):427–438. https://doi.org/10.1080/13543776.2017.1261112

    Article  CAS  Google Scholar 

  75. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by Parkin from human brain: implications for Parkinson’s disease. Science 293(5528):263–269. https://doi.org/10.1126/science.1060627

    Article  PubMed  CAS  Google Scholar 

  76. Jęśko H, Lenkiewicz AM, Wilkaniec A, Adamczyk A (2019) The interplay between Parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol Exp (Wars) 79(3):276–289

    Article  PubMed  Google Scholar 

  77. Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K (2012) Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 7(3):668. https://doi.org/10.1038/ncomms1669

    Article  CAS  Google Scholar 

  78. Madsen DA, Schmidt SI, Blaabjerg M, Meyer M (2021) Interaction between Parkin and α-Synuclein in PARK2-mediated Parkinson’s disease. Cells 10(2):283. https://doi.org/10.3390/cells10020283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ramalingam M, Huh YJ, Lee YI (2019) The impairments of α-Synuclein and mechanistic target of rapamycin in rotenone-induced SH-SY5Y cells and mice model of Parkinson’s disease. Front Neurosci 24(13):1028. https://doi.org/10.3389/fnins.2019.01028

    Article  Google Scholar 

  80. Meng Y, Qiao H, Ding J, He Y, Fan H, Li C, Qiu P (2020) Effect of Parkin on methamphetamine-induced α-synuclein degradation dysfunction in vitro and in vivo. Brain Behav 10(4):e01574. https://doi.org/10.1002/brb3.1574

    Article  PubMed  PubMed Central  Google Scholar 

  81. Barazzuol L, Giamogante F, Brini M, Calì T (2020) PINK1/Parkin mediated mitophagy, Ca2+ signalling, and ER-mitochondria contacts in Parkinson’s disease. Int J Mol Sci 21(5):1772. https://doi.org/10.3390/ijms21051772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Panicker N, Kam TI, Wang H, Neifert S, Chou SC, Kumar M, Brahmachari S, Jhaldiyal A et al (2022) Neuronal NLRP3 is a Parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 110(15):2422–2437.e9. https://doi.org/10.1016/j.neuron.2022.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Yan YQ, Fang Y, Zheng R, Pu JL, Zhang BR (2020) NLRP3 inflammasomes in Parkinson’s disease and their regulation by Parkin. Neuroscience 15(446):323–334. https://doi.org/10.1016/j.neuroscience.2020.08.004

    Article  CAS  Google Scholar 

  84. Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561(7722):258–262. https://doi.org/10.1038/s41586-018-0448-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Matteucci A, Patron M, Vecellio Reane D, Gastaldello S, Amoroso S, Rizzuto R, Brini M, Raffaello A, Calì T (2018) Parkin-dependent regulation of the MCU complex component MICU1. Sci Rep 8(1):14199. https://doi.org/10.1038/s41598-018-32551-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sandebring A, Dehvari N, Perez-Manso M, Thomas KJ, Karpilovski E, Cookson MR, Cowburn RF, Cedazo-Mínguez A (2009) Parkin deficiency disrupts calcium homeostasis by modulating phospholipase C signalling. FEBS J 276(18):5041–5052. https://doi.org/10.1111/j.1742-4658.2009.07201.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G (2019) Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 127:114–130. https://doi.org/10.1016/j.nbd.2019.02.008

    Article  PubMed  CAS  Google Scholar 

  88. Bogetofte H, Jensen P, Okarmus J, Schmidt SI, Agger M, Ryding M, Nørregaard P, Fenger C et al (2019) Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiol Dis 132:104581. https://doi.org/10.1016/j.nbd.2019.104581

    Article  PubMed  CAS  Google Scholar 

  89. Pu J, Lin L, Jiang H, Hu Z, Li H, Yan Z, Zhang B, Feng J (2023) Parkin maintains robust pacemaking in human induced pluripotent stem cell-derived A9 dopaminergic neurons. Mov Disord. https://doi.org/10.1002/mds.29434

  90. Khandelwal PJ, Moussa CE (2010) The relationship between Parkin and protein aggregation in neurodegenerative diseases. Front Psychiatry 3(1):15. https://doi.org/10.3389/fpsyt.2010.00015

    Article  CAS  Google Scholar 

  91. Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI et al (2014) Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 4(3):130213. https://doi.org/10.1098/rsob.130213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 205(2):143–153. https://doi.org/10.1083/jcb.201402104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N (2015) Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 209(1):111–128. https://doi.org/10.1083/jcb.201410050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, Yanishevski D, Rinehart J, Schulman BA et al (2015) Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A 112(21):6637–6642. https://doi.org/10.1073/pnas.1506593112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286(22):19630–19640. https://doi.org/10.1074/jbc.M110.209338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Imberechts D, Kinnart I, Wauters F, Terbeek J, Manders L, Wierda K, Eggermont K, Madeiro RF et al (2022) DJ-1 is an essential downstream mediator in PINK1/Parkin-dependent mitophagy. Brain 145(12):4368–4384. https://doi.org/10.1093/brain/awac313

    Article  PubMed  PubMed Central  Google Scholar 

  97. Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Inves 119(3):650–660. https://doi.org/10.1172/JCI37617

    Article  CAS  Google Scholar 

  98. Tsai YC, Fishman PS, Thakor NV, Oyler GA (2003) Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 278(24):22044–22055. https://doi.org/10.1074/jbc.M212235200

    Article  PubMed  CAS  Google Scholar 

  99. Takahashi R, Imai Y (2003) Pael receptor, endoplasmic reticulum stress, and Parkinson’s disease. J Neurol 250(Suppl 3):III25–III29. https://doi.org/10.1007/s00415-003-1305-8

    Article  PubMed  CAS  Google Scholar 

  100. Mylvaganam S, Earnshaw R, Heymann G, Kalia SK, Kalia LV (2021) C-terminus of Hsp70 interacting protein (CHIP) and neurodegeneration: lessons from the bench and bedside. Curr Neuropharmacol 19(7):1038–1068. https://doi.org/10.2174/1570159X18666201116145507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Yoo L, Chung KC (2018) The ubiquitin E3 ligase CHIP promotes proteasomal degradation of the serine/threonine protein kinase PINK1 during staurosporine-induced cell death. J Biol Chem 293(4):1286–1297. https://doi.org/10.1074/jbc.M117.803890

    Article  PubMed  CAS  Google Scholar 

  102. Yoon SH, Chung T (2019) Protein and RNA quality control by autophagy in plant cells. Mol Cells 42(4):285–291. https://doi.org/10.14348/molcells.2019.0011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Moore DJ, West AB, Dikeman DA, Dawson VL, Dawson TM (2008) Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem 105(5):1806–1819. https://doi.org/10.1111/j.1471-4159.2008.05261.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhang CW, Adeline HB, Chai BH, Hong ET, Ng CH, Lim KL (2016) Pharmacological or genetic activation of Hsp70 protects against loss of Parkin function. Neurodegener Dis 16(5-6):304–316. https://doi.org/10.1159/000443668

    Article  PubMed  CAS  Google Scholar 

  105. Zheng Q, Huang C, Guo J, Tan J, Wang C, Tang B, Zhang H (2018) Hsp70 participates in PINK1-mediated mitophagy by regulating the stability of PINK1. Neurosci Lett 1(662):264–270

    Article  Google Scholar 

  106. Rai SN, Singh P, Varshney R, Chaturvedi VK, Vamanu E, Singh MP, Singh BK (2021) Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen Res 16(9):1730–1739. https://doi.org/10.4103/1673-5374.306066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Xu J, Du W, Zhao Y, Lim K, Lu L, Zhang C, Li L (2022) Mitochondria targeting drugs for neurodegenerative diseases-design, mechanism and application. Acta Pharm Sin B 12(6):2778–2789. https://doi.org/10.1016/j.apsb.2022.03.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Zenina TA, Gudasheva TA, Bukreyev YS, Seredenin SB (2007) Neuroprotective effect of dipeptide AVP (4-5)-NH2 is associated with nerve growth factor and heat shock protein HSP70. Bull Exp Biol Med 144(4):543–545. https://doi.org/10.1007/s10517-007-0373-7

    Article  PubMed  CAS  Google Scholar 

  109. Sun H, Jiang M, Fu X, Cai Q, Zhang J, Yin Y, Guo J, Yu L et al (2017) Mesencephalic astrocyte-derived neurotrophic factor reduces cell apoptosis via upregulating HSP70 in SHSY-5Y cells. Transl Neurodegener 22(6):12. https://doi.org/10.1186/s40035-017-0082-8

    Article  CAS  Google Scholar 

  110. Yurchenko EA, Kolesnikova SA, Lyakhova EG, Menchinskaya ES, Pislyagin EA, Chingizova EA, Aminin DL (2020) Lanostane triterpenoid metabolites from a Penares sp. marine sponge protect neuro-2a cells against paraquat neurotoxicity. Molecules 25(22):5397. https://doi.org/10.3390/molecules25225397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bao XQ, Wang XL, Zhang D (2017) FLZ Attenuates α-Synuclein-induced neurotoxicity by activating heat shock protein 70. Mol Neurobiol 54(1):349–361. https://doi.org/10.1007/s12035-015-9572-9

    Article  PubMed  CAS  Google Scholar 

  112. Bi M, Feng L, He J, Liu C, Wang Y, Jiang H, Liu SJ (2022) Emerging insights between gut microbiome dysbiosis and Parkinson’s disease: pathogenic and clinical relevance. Ageing Res Rev 82:101759. https://doi.org/10.1016/j.arr.2022.10175

    Article  PubMed  CAS  Google Scholar 

  113. Song S, Nie Q, Li Z, Du G (2016) Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats. Pathol Res Pract 212(4):247–251. https://doi.org/10.1016/j.prp.2015.11.012

    Article  PubMed  CAS  Google Scholar 

  114. Kilpatrick K, Novoa JA, Hancock T, Guerriero CJ, Wipf P, Brodsky JL, Segatori L (2013) Chemical induction of Hsp70 reduces α-synuclein aggregation in neuroglioma cells. ACS Chem Biol 8(7):1460–1468. https://doi.org/10.1021/cb400017h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yang J, Zhang Y, Zhao S, Zhang Z, Tong X, Wei F, Lu Z (2015) Heat shock protein 70 induction by glutamine increases the α-synuclein degradation in SH-SY5Y neuroblastoma cells. Mol Med Rep 12(4):5524–5530. https://doi.org/10.3892/mmr.2015.4027

    Article  PubMed  CAS  Google Scholar 

  116. Wang H, Tang C, Jiang Z, Zhou X, Chen J, Na M, Shen H, Lin Z (2017) Glutamine promotes Hsp70 and inhibits α-Synuclein accumulation in pheochromocytoma PC12 cells. Exp Ther Med 14(2):1253–1259. https://doi.org/10.3892/etm.2017.4580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Jung YJ, Choi H, Oh E (2022) Melatonin attenuates MPP+-induced apoptosis via heat shock protein in a Parkinson’s disease model. Biochem Biophys Res Commun 17(621):59–66. https://doi.org/10.1016/j.bbrc.2022.06.099

    Article  CAS  Google Scholar 

  118. Schneider MM, Gautam S, Herling TW, Andrzejewska E, Krainer G, Miller AM, Trinkaus VA, Peter QAE et al (2021) The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends. Nat Commun 12(1):5999. https://doi.org/10.1038/s41467-021-25966-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Xia M, Bian M, Yu Q, Liu J, Huang Y, Jin X, Lu S, Yu M et al.  (2011) Cold water stress attenuates dopaminergic neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Acta Biochim Biophys Sin (Shanghai) 43(6):448–454. https://doi.org/10.1093/abbs/gmr029

    Article  PubMed  CAS  Google Scholar 

  120. Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M (2019) A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem 49(2):138–149. https://doi.org/10.1080/10408347.2018.1489216

    Article  PubMed  CAS  Google Scholar 

  121. Carter MD, Juurlink DN (2012) Melatonin. CMAJ 184(17):1923. https://doi.org/10.1503/cmaj.111765

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P (2022) The potential applications of traditional Chinese medicine in Parkinson’s disease: a new opportunity. Biomed Pharmacother 149:112866. https://doi.org/10.1016/j.biopha.2022.112866

    Article  PubMed  CAS  Google Scholar 

  123. Ahmed S, Kwatra M, Ranjan Panda S, Murty USN, Naidu VGM (2021) Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of Parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 91:142–158. https://doi.org/10.1016/j.bbi.2020.09.017

    Article  PubMed  CAS  Google Scholar 

  124. Tsai RT, Tsai CW, Liu SP, Gao JX, Kuo YH, Chao PM, Hung HS, Shyu WC et al (2020) Maackiain ameliorates 6-hydroxydopamine and SNCA pathologies by modulating the PINK1/Parkin pathway in models of Parkinson’s disease in Caenorhabditis elegans and the SH-SY5Y cell line. Int J Mol Sci 21(12):4455. https://doi.org/10.3390/ijms21124455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hsu YL, Hung HS, Tsai CW, Liu SP, Chiang YT, Kuo YH, Shyu WC, Lin SZ et al (2021) Peiminine reduces ARTS-mediated degradation of XIAP by modulating the PINK1/Parkin pathway to ameliorate 6-hydroxydopamine toxicity and α-Synuclein accumulation in Parkinson’s disease models in vivo and in vitro. Int J Mol Sci 22(19):10240. https://doi.org/10.3390/ijms221910240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bai H, Ding Y, Li X, Kong D, Xin C, Yang X, Zhang C, Rong Z et al (2020) Polydatin protects SH-SY5Y in models of Parkinson’s disease by promoting Atg5-mediated but Parkin-independent autophagy. Neurochem Int 134:104671. https://doi.org/10.1016/j.neuint.2020.104671

    Article  PubMed  CAS  Google Scholar 

  127. Li R, Chen J (2019) Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Oxid Med Cell Longev 10(2019):9341018. https://doi.org/10.1155/2019/9341018

    Article  CAS  Google Scholar 

  128. Zhi Y, Jin Y, Pan L, Zhang A, Liu F (2019) Schisandrin A ameliorates MPTP-induced Parkinson’s disease in a mouse model via regulation of brain autophagy. Arch Pharm Res 42(11):1012–1020. https://doi.org/10.1007/s12272-019-01186-1

    Article  PubMed  CAS  Google Scholar 

  129. Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S et al (2021) Silibinin attenuates motor dysfunction in a mouse model of Parkinson’s disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 1(239):113510. https://doi.org/10.1016/j.physbeh.2021.113510

    Article  CAS  Google Scholar 

  130. Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B (2021) Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease. Acta Pharm Sin B 11(10):3015–3034. https://doi.org/10.1016/j.apsb.2021.02.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ma HJ, Gai C, Chai Y, Feng WD, Cheng CC, Zhang JK, Zhang YX, Yang LP et al (2020) Bu-Yin-Qian-Zheng formula ameliorates MPP+-induced mitochondrial dysfunction in Parkinson’s disease via Parkin. Front Pharmacol 18(11):577017. https://doi.org/10.3389/fphar.2020.577017

    Article  Google Scholar 

  132. Lee IJ, Chao CY, Yang YC, Cheng JJ, Huang CL, Chiou CT, Huang HT, Kuo YH et al (2021) Huang Lian Jie Du Tang attenuates paraquat-induced mitophagy in human SH-SY5Y cells: a traditional decoction with a novel therapeutic potential in treating Parkinson's disease. Biomed Pharmacothe 134:111170. https://doi.org/10.1016/j.biopha.2020.111170

    Article  CAS  Google Scholar 

  133. Ren ZL, Wang CD, Wang T, Ding H, Zhou M, Yang N, Liu YY, Chan P (2019) Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta Pharmacol Sin 40(4):441–450. https://doi.org/10.1038/s41401-018-0077-8

    Article  PubMed  CAS  Google Scholar 

  134. Abrishamdar M, Jalali MS, Farbood Y (2022) Targeting mitochondria as a therapeutic approach for Parkinson’s disease. Cell Mol Neurobiol 11. https://doi.org/10.1007/s10571-022-01265-w

  135. Feng ST, Wang ZZ, Yuan YH, Wang XL, Guo ZY, Hu JH, Yan X, Chen NH et al (2021) Inhibition of dynamin-related protein 1 ameliorates the mitochondrial ultrastructure via PINK1 and Parkin in the mice model of Parkinson’s disease. Eur J Pharmacol 15(907):174262. https://doi.org/10.1016/j.ejphar.2021.174262

    Article  CAS  Google Scholar 

  136. Moskal N, Riccio V, Bashkurov M, Taddese R, Datti A, Lewis PN, Angus McQuibban G (2020) ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway. Nat Commun 11(1):88. https://doi.org/10.1038/s41467-019-13781-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Rai P, Roy JK (2022) Rab11 regulates mitophagy signaling pathway of Parkin and Pink1 in the Drosophila model of Parkinson’s disease. Biochem Biophys Res Commun 20(626):175–186. https://doi.org/10.1016/j.bbrc.2022.08.027

    Article  CAS  Google Scholar 

  138. Rai P, Kumar Roy J (2022) Endosomal recycling protein Rab11 in Parkin and Pink1 signaling in Drosophila model of Parkinson's disease. Exp Cell Res 420(2):113357. https://doi.org/10.1016/j.yexcr.2022.113357

    Article  PubMed  CAS  Google Scholar 

  139. Qi H, Shen D, Jiang C, Wang H, Chang M (2021) Ursodeoxycholic acid protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis in MPTP/MPP+-induced Parkinson’s disease. Neurosci Lett 10(741):135493. https://doi.org/10.1016/j.neulet.2020.135493

    Article  CAS  Google Scholar 

  140. Li B, An D, Zhu S (2022) PBX1 attenuates 6-OHDA-induced oxidative stress and apoptosis and affects PINK1/PARKIN expression in dopaminergic neurons via FOXA1. Cytotechnology 74(2):217–229. https://doi.org/10.1007/s10616-021-00518-8

  141. Masaldan S, Callegari S, Dewson G (2022) Therapeutic targeting of mitophagy in Parkinson’s disease. Biochem Soc Trans 50(2):783–797. https://doi.org/10.1042/BST20211107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yan J, Sun W, Shen M, Zhang Y, Jiang M, Liu A, Ma H, Lai X, Wu J et al (2022) Idebenone improves motor dysfunction, learning and memory by regulating mitophagy in MPTP-treated mice. Cell Death Discov 8(1):28. https://doi.org/10.1038/s41420-022-00826-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Miller S, Muqit MMK (2019) Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease. Neurosci Lett 13(705):7–13. https://doi.org/10.1016/j.neulet.2019.04.029

    Article  CAS  Google Scholar 

  144. Chung E, Choi Y, Park J, Nah W, Park J, Jung Y, Lee J, Lee H et al (2020) Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. Sci Adv 6(18):eaba1193. https://doi.org/10.1126/sciadv.aba1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Zhang XR, Fu XJ, Zhu DS, Zhang CZ, Hou S, Li M, Yang XH (2016) Salidroside-regulated lipid metabolism with down-regulation of miR-370 in type 2 diabetic mice. Eur J Pharmacol 15(779):46–52. https://doi.org/10.1016/j.ejphar.2016.03.011

    Article  CAS  Google Scholar 

  146. Song F, Zeng K, Liao L, Yu Q, Tu P, Wang X (2016) Schizandrin A inhibits microglia-mediated neuroninflammation through inhibiting TRAF6-NF-κB and Jak2-Stat3 signaling pathways. PLoS One 11(2):e0149991. https://doi.org/10.1371/journal.pone.0149991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Bodmer M, Vankan P, Dreier M, Kutz KW, Drewe J (2009) Pharmacokinetics and metabolism of idebenone in healthy male subjects. Eur J Clin Pharmacol 65(5):493–501. https://doi.org/10.1007/s00228-008-0596-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by grants to Chengwu Zhang from Natural Science Foundation of Shanxi Province (#20210302123299); grant to Kahleong Lim from the Science and Technology Cooperation and Exchange Project of Shanxi Province (#202104041101026); and from the Natural Science Foundation of Jiangsu Province (BK20210544), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, the Open Program of NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine (KF202203), and the Open Project of State Key Laboratory of Coordination Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, drafting the article, or revising it critically for important intellectual content, and approval of the final version. Zhongting Zhao and Zheng Li conceived the idea and wrote the draft. Fangning Du, Yixin Wang, and Yue Wu worked on figures and tables. Kah-leong Lim and Lin Li helped edit the manuscript. Chengwu Zhang, Changmin Yu, and Naidi Yang finalized the manuscript.

Corresponding authors

Correspondence to Naidi Yang, Changmin Yu or Chengwu Zhang.

Ethics declarations

Ethics Approval

This is a review article. There is no ethical approval applicable.

Consent to Participate

Not applicable.

Consent for Publication

This is a review article. There is no consent to publish applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, Z., Du, F. et al. Linking Heat Shock Protein 70 and Parkin in Parkinson’s Disease. Mol Neurobiol 60, 7044–7059 (2023). https://doi.org/10.1007/s12035-023-03481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03481-x

Keywords

Navigation